
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-40

2004-07-28

Models, Algorithms, and Architectures for Scalable Packet Models, Algorithms, and Architectures for Scalable Packet

Classification Classification

David Edward Taylor and Jonathan S. Turner

The growth and diversification of the Internet imposes increasing demands on the performance

and functionality of network infrastructure. Routers, the devices responsible for the switch-ing

and directing of traffic in the Internet, are being called upon to not only handle increased

volumes of traffic at higher speeds, but also impose tighter security policies and provide

support for a richer set of network services. This dissertation addresses the searching tasks

performed by Internet routers in order to forward packets and apply network services to packets

belonging to defined traffic flows. As these searching tasks must be performed for each

packet... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Taylor, David Edward and Turner, Jonathan S., "Models, Algorithms, and Architectures for Scalable Packet
Classification" Report Number: WUCSE-2004-40 (2004). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1014

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1014?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1014

Models, Algorithms, and Architectures for Scalable Packet Classification Models, Algorithms, and Architectures for Scalable Packet Classification

David Edward Taylor and Jonathan S. Turner

Complete Abstract: Complete Abstract:

The growth and diversification of the Internet imposes increasing demands on the performance and
functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of
traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher
speeds, but also impose tighter security policies and provide support for a richer set of network services.
This dissertation addresses the searching tasks performed by Internet routers in order to forward packets
and apply network services to packets belonging to defined traffic flows. As these searching tasks must
be performed for each packet traversing the router, the speed and scalability of the solutions to the route
lookup and packet classification problems largely determine the realizable performance of the router, and
hence the Internet as a whole. Despite the energetic attention of the academic and corporate research
communities, there remains a need for search engines that scale to support faster communication links,
larger route tables and filter sets and increasingly complex filters. The major contributions of this work
include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching
(LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a
thorough analysis of packet classification filter sets, the design and analysis of a suite of performance
evaluation tools for packet classification algorithms and devices, and a new packet classification
algorithm that scales to support high-speed links and large filter sets classifying on additional packet
fields.

https://openscholarship.wustl.edu/cse_research/1014?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1014?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MODELS, ALGORITHMS, AND ARCHITECTURES FOR

SCALABLE PACKET CLASSIFICATION

by

David Edward Taylor, M.S.Co.E., M.S.E.E., B.S.Co.E., B.S.E.E.

Prepared under the direction of Dr. Jonathan S. Turner

A dissertation presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Doctor of Science

August, 2004

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

MODELS, ALGORITHMS, AND ARCHITECTURES FOR

SCALABLE PACKET CLASSIFICATION

by David Edward Taylor

ADVISOR: Dr. Jonathan S. Turner

August, 2004

Saint Louis, Missouri

The growth and diversification of the Internet imposes increasing demands on the perfor-

mance and functionality of network infrastructure. Routers, the devices responsible for the switch-

ing and directing of traffic in the Internet, are being called upon to not only handle increased vol-

umes of traffic at higher speeds, but also impose tighter security policies and providesupport for a

richer set of network services. This dissertation addresses the searching tasks performed by Inter-

net routers in order to forward packets and apply network services to packets belonging to defined

traffic flows. As these searching tasks must be performed for each packet traversing the router, the

speed and scalability of the solutions to the route lookup and packet classification problems largely

determine the realizable performance of the router, and hence the Internet as a whole. Despite the

energetic attention of the academic and corporate research communities, there remains a need for

search engines that scale to support faster communication links, larger route tablesand filter sets,

and increasingly complex filters. The major contributions of this work include the design and anal-

ysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for

route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of

packet classification filter sets, the design and analysis of a suite of performance evaluation tools for

packet classification algorithms and devices, and a new packet classification algorithmthat scales

to support high-speed links and large filter sets classifying on additional packet fields.

copyright by

David Edward Taylor

2004

SOLI DEO GLORIA

to God alone be the glory

Contents

List of Tables . ix

List of Figures . xi

Acknowledgments . xvii

Preface . xx

1 Introduction . 1

1.1 State of the Internet . 1

1.2 The “Next Generation” Internet .5

1.3 The Packet Classification Problem . 6

1.3.1 Constraints . 9

1.4 Organization of the Dissertation . 11

2 Single-Field Search Techniques . 12

2.1 Exact Matching . 12

2.1.1 B-Trees . 13

2.1.2 Hashing . 13

2.1.3 Bloom Filters . 14

2.2 Longest Prefix Matching (LPM) . 17

2.2.1 Linear Search . 18

2.2.2 Content Addressable Memory (CAM) . 18

2.2.3 Trie Based Schemes . 19

2.2.4 Multiway and Multicolumn Search . 21

2.2.5 Binary Search on Prefix Lengths . 22

2.2.6 Longest Prefix Matching using Bloom Filters 23

2.3 All Prefix Matching (APM) . 25

2.4 Range Matching . 26

2.4.1 Segment Tree . 27

2.4.2 Interval Tree . 28

v

2.4.3 Range to Prefix Conversion . 29

2.4.4 Range Matching Circuits . 30

3 Fast Internet Protocol Lookup (FIPL) . 31

3.1 Introduction . 31

3.2 Tree Bitmap Algorithm . 33

3.2.1 Split-Trie Optimization . 36

3.3 Hardware Design and Implementation . 37

3.3.1 FIPL Engine . 38

3.3.2 FIPL Engine Controller . 40

3.3.3 Implementation Platform . 41

3.3.4 Memory Configuration . 42

3.3.5 Worst-Case Performance . 42

3.3.6 Hardware Resource Usage . 42

3.4 System Management and Control Components43

3.4.1 NCHARGE . 43

3.4.2 FIPL Memory Manager . 43

3.4.3 Sockets Interfaces . 45

3.4.4 Remote User Interface . 45

3.4.5 Command Flow . 45

3.5 Performance Measurements . 47

3.5.1 Memory Utilization . 48

3.5.2 Lookup Rate . 48

3.6 Towards Better Performance . 50

3.6.1 Implementation Optimizations . 51

3.6.2 Root Node Extension & Caching . 51

3.7 Related Work . 53

3.8 Discussion . 55

4 Multiple Field Search Techniques . 56

4.1 Taxonomy . 57

4.2 Exhaustive Search . 58

4.2.1 Linear Search . 60

4.2.2 Ternary Content Addressable Memory (TCAM) 60

4.3 Decision Tree . 62

4.3.1 Grid-of-Tries . 64

4.3.2 Extended Grid-of-Tries (EGT) . 67

4.3.3 Hierarchical Intelligent Cuttings (HiCuts) 69

4.3.4 Modular Packet Classification . 70

vi

4.3.5 HyperCuts . 73

4.3.6 Extended TCAM (E-TCAM) . 74

4.3.7 Fat Inverted Segment (FIS) Trees . 75

4.4 Decomposition . 78

4.4.1 Parallel Bit-Vectors (BV) . 78

4.4.2 Aggregated Bit-Vector (ABV) . 80

4.4.3 Crossproducting . 82

4.4.4 Recursive Flow Classification (RFC) . 82

4.4.5 Parallel Packet Classification (P 2C) . 84

4.4.6 Distributed Crossproducting of Field Labels (DCFL) 87

4.5 Tuple Space . 90

4.5.1 Tuple Space Search & Tuple Pruning . 92

4.5.2 Rectangle Search . 94

4.5.3 Conflict-Free Rectangle Search . 95

4.6 Caching . 95

4.7 Discussion . 96

5 Analysis of Real Filter Sets. 98

5.1 Understanding Filter Composition . 99

5.2 Previous Observations . 99

5.3 Application Specifications . 101

5.3.1 Protocol . 101

5.3.2 Port Ranges . 102

5.3.3 Port Pair Class . 103

5.4 Address Prefix Pairs . 105

5.5 Scope . 112

5.6 Filter Overlap . 114

5.7 Field Value Overlap . 116

5.8 Additional Fields . 117

5.9 Impact of IPv6 Migration . 119

5.9.1 Address Architecture . 119

5.9.2 Address Allocation & Assignment . 120

6 ClassBench: A Packet Classification Benchmark. 122

6.1 Motivation . 122

6.2 Related Work . 125

6.3 Parameter Files . 126

6.4 Synthetic Filter Set Generation . 129

6.4.1 Smoothing Adjustment . 133

vii

6.4.2 Scope Adjustment . 135

6.4.3 Filter Redundancy & Priority . 141

6.5 Trace Generation . 143

6.6 Benchmarking with ClassBench . 145

7 Scalable Packet Classification using Distributed Crossproducting of Field Labels. . 148

7.1 Description of DCFL . 149

7.2 Aggregation Network . 154

7.3 Field Splitting . 156

7.4 Aggregation Nodes . 159

7.4.1 Bloom Filter Arrays . 159

7.4.2 Meta-Label Indexing . 161

7.5 Field Search Engines . 163

7.5.1 Prefix Matching . 163

7.5.2 Range Matching . 164

7.5.3 Exact Matching . 165

7.6 Dynamic Updates . 165

7.7 Performance Evaluation . 167

7.8 Related Work . 175

7.9 Discussion . 178

8 Summary . 179

8.1 Contributions . 179

8.2 Future Directions . 181

Appendix A Additional Data from Real Filter Sets . 183

References. 190

Vita . 198

viii

List of Tables

1.1 Example filter set of 16 filters classifying on four fields; each filter has an associated

flow identifier (Flow ID) and priority tag (PT) where† denotes a non-exclusive filter;

wildcard fields are denoted with∗. 8

3.1 Memory usage for theTree Bitmapdata structure and next hop information using a

snapshot of the Mae-West database from March 15, 2002 consisting of 27,609 routes. 48

3.2 Memory usage for root node array optimization. 53

4.1 Example filter set; port numbers are restricted to be an exact value or wildcard. . .65

4.2 Example filter set; address field is 4-bits and port ranges cover 4-bit port numbers.. 69

4.3 Example filter set; address fields are 4-bits and port ranges cover 4-bit port numbers. 91

5.1 Observed protocols and filter distribution; values given as percentage (%) of filters

in the filter set. 102

5.2 Distribution of filters over the five port classes for source and destination port range

specifications; values given as percentage (%) of filters in the filter set. 103

5.3 Number of unique specifications in the Arbitrary Range (AR) and Exact Match

(EM) port classes for source and destination port ranges. 104

5.4 Number of entries required to store filter set in a standard TCAM. 106

5.5 Number of unique address prefix lengths for source address (SA), destination ad-

dress (DA), and source/destination address pairs (SA/DA). 106

5.6 5-tuple scope measurements, average (µscope) and standard deviation (σscope). . . . 114

5.7 Maximum number of filters matching any packet; partial matches for each fieldin

the 5-tuple, source/destination address prefix pair (SA-DA), and application specifi-

cation (SP-DP-PR); full matches on all fields (All); matches; data from 12 real filter

sets. 116

5.8 Number of unique field values and combinations of field values specified byfilters

in 12 real filter sets. 118

5.9 Maximum number of unique field values and combinations of field values matching

a packet; data from 12 real filter sets. 118

ix

7.1 Sets of unique specifications for each field in the sample filter set. 152

x

List of Figures

1.1 Simple diagram of Internet architecture. 3

1.2 Format of Internet Protocol Version 4 (IPv4) packet headers with appended transport

protocol header fields. 4

1.3 Internet Protocol Version 4 (IPv4) address space allocation. 4

1.4 Example of Longest Prefix Matching for a 12-bit search key; all shaded prefixes

match the key, but1000000011∗ is the longest matching prefix. 7

2.1 Example of a B-Tree storing multiples of three, wheret = 3. 14

2.2 Example of hashing with chaining using the four low-order bits as a hash index. .. 15

2.3 Example of inserting two keys,x andy, into a Bloom filter. 15

2.4 Example of querying a Bloom filter;w is a non-member,x is a correct match;z is

a false positive match. 16

2.5 Example of Longest Prefix Matching for a 12-bit address using linear search; pre-

fixes are sorted in decreasing order of prefix length; the first matching prefix is the

longest. 18

2.6 Example of Longest Prefix Matching using a binary trie. 20

2.7 Example of a direct lookup array for the first three bits. 22

2.8 Basic configuration of Longest Prefix Matching using Bloom filters, (BIPL). 24

2.9 Nesting treetechnique for finding all matching prefixes for a given longest matching

prefix. 26

2.10 Example of projecting endpoints of intervals to form non-overlapping segmentson

the real line, and using theFat Inverted Segment(FIS) Tree to search the set of

segments. 27

2.11 Example of anInterval Treewhere each node stores the maximum endpoint value

for all intervals in its subtree. 29

3.1 IP lookup table of next hops. Next hops for IP packets are found using the longest

matching prefix in the table for the IP destination address of the packet. 33

3.2 IP lookup table represented as a binary trie. Stored prefixes are denoted by shaded

nodes. Next hops are found by traversing the trie. 34

xi

3.3 IP lookup table represented as a multibit trie. A stride, 4-bits, of the unicast desti-

nation address of the IP packet are compared at once, speeding up the lookupprocess. 35

3.4 Bitmap coding of a multibit trie node. The internal bitmap represents the stored

prefixes in the node while the extending paths bitmap represents the child nodes of

the current node. 35

3.5 IP lookup table represented as a Tree Bitmap. Child nodes are stored contiguously

so that a single pointer and an index may be used to locate any child node in the the

data structure. 36

3.6 Split-trie optimization of theTree Bitmapdata structure. 37

3.7 Block diagram of router with multi-engine FIPL configuration; detail of FIPL sys-

tem components in the Port Processor (PP). 38

3.8 FIPL engine dataflow; multi-cycle path from input data flops to output address flops

can be scaled according to target device speed; all multiplexor select lines andflip-

flop enables implicitly driven by finite-state machine outputs. 39

3.9 FIPL engine state transition diagram. 41

3.10 Control of the Field-programmable Port eXtender (FPX) via NCHARGE software.

Each FPX is controlled by an instance of NCHARGE which provides an API for

FPX control via remote software process. 44

3.11 Command flow for control of FIPL via a remote host. 46

3.12 FPX Web Interface for FIPL route updates. 46

3.13 Block diagram of FIPL evaluation environment.47

3.14 FIPL performance: measurements used a snapshot of the Mae-West database from

March 15, 2002 consisting of 27,609 routes. Input IPv4 destination addresses were

created by randomly selecting 16,384 prefixes from the Mae-West database. 49

3.15 FIPL performance under update load: measurements used a snapshot of the Mae-

West database from March 15, 2002 consisting of 27,609 routes. Input IPv4 desti-

nation addresses were created by randomly selecting 16,384 prefixes from the Mae-

West database. Updates consisted of alternating addition and deletion of a 24-bit

prefix. 50

3.16 FIPL Split-Trie performance under update load: measurements used a snapshot of

the Mae-West database from March 15, 2002 consisting of 27,609 routes. Input

IPv4 destination addresses were created by randomly selecting 16,384 prefixes from

the Mae-West database. Updates consisted of alternating addition and deletion of a

24-bit prefix. 51

3.17 Root node extension using an on-chip array and multiple sub-tries.52

4.1 Taxonomy of multiple field search techniques for packet classification; adjacent

techniques are related; hybrid techniques overlap quadrant boundaries;∗ denotes a

seminal technique. 57

xii

4.2 Example of encoding filters by unique field values to reduce storage requirements.. 60

4.3 Circuit diagram of a standard TCAM cell; the stored value (0, 1, Don’t Care) is

encoded using two registersa1anda2. 61

4.4 Example of a näıve construction of a decision tree for packet classification on three

fields; all filter fields are converted to bit vectors with arbitrary bit masks. 63

4.5 Example of set pruning trees andGrid-of-Triesclassifying on the destination and

source address prefixes for the example filter set in Table 4.1. 66

4.6 Example of 5-tuple packet classification usingGrid-of-Tries, pre-filtering on proto-

col and port number classes, for the example filter set in Table 4.1.67

4.7 Example of 5-tuple packet classification usingExtended Grid-of-Tries(EGT) for

the example filter set in Table 4.1. 68

4.8 Geometric representation of the example filter set shown in Table 4.2.70

4.9 ExampleHiCutsdata structure for example filter set in Table 4.2. 71

4.10 Geometric representation of partitioning created byHiCutsdata structure shown in

Figure 4.9. 72

4.11 Modular packet classification using ternary strings and a three-stage search archi-

tecture. 73

4.12 Example of searching the filter set in Table 4.2 using anExtended TCAM(E-TCAM)

using a two-stage search and a filter block size of four. 75

4.13 Example of partitioning the filter set in Table 4.2 for anExtended TCAM(E-TCAM)

with a two-stage search and a filter block size of four. 76

4.14 Example ofFat Inverted Segment(FIS) Treesfor the filter set in Table 4.2. 77

4.15 Example of bit-vector construction for theParallel Bit-Vectorstechnique using the

filter set shown in Table 4.2. 79

4.16 Example of bit-vector and aggregate bit-vector construction for theAggregated Bit-

Vectorstechnique using the filter set shown in Table 4.2. 81

4.17 Example ofCrossproductingtechnique for filter set with three fields; full crossprod-

uct table is not shown due to space constraints. 83

4.18 Example ofRecursive Flow Classification(RFC) using the filter set in Table 4.2. . 85

4.19 Example ofParallel Packet Classification(P 2C) using the most update-efficient

encoding style for the port ranges defined in the filter set in Table 4.2. 86

4.20 Example of encoding filters with field labels inDistributed Crossproducting of Field

Labels(DCFL) using same filter table as Figure 4.17; count values support dynamic

updates. 89

4.21 Example of search usingDistributed Crossproducting of Field Labels(DCFL) . . . 90

4.22 Example of assigning tuple values for ranges based onNesting LevelandRange ID. 91

xiii

4.23 Example ofTuple Pruningto narrow the scope of theTuple Space Search; the set of

pruned tuplesis the intersection of the sets of tuples found along the search paths

for each field. 93

4.24 Example ofRectangle Searchon source and destination prefixes of filters in Table 4.3. 94

5.1 Example of overlaps formed by fully-specified and partially-specified address prefix

pairs. 101

5.2 Port Pair Matrices for two filter sets. 105

5.3 Prefix length distribution for address prefix pairs. 108

5.4 Example of complete statistical characterization of address prefixes. 109

5.5 Example of skew computation for the first four levels of an address trie; shaded

nodes denote a prefix specified by a single filter; subtrees denoted by triangles with

associated weight. 109

5.6 Source address branching probability and skew for filter set acl5.110

5.7 Destination address branching probability and skew for filter set acl5. 111

5.8 Address prefix correlation; probability that address prefixes of a filter continue to be

the same at a given prefix length. 113

5.9 Distribution of 5-tuple scope for filters in filter sets acl2 and acl5. 115

5.10 Combined prefix length distribution for IPv6 BGP route table snapshots. 120

6.1 Block diagram of theClassBenchtools suite. The syntheticFilter Set Generator

has size, smoothing, and scope adjustments which provide high-level, systematic

mechanisms for altering the size and composition of synthetic filter sets. The set of

benchmarkparameter filesmodel real filter sets and may be refined over time. The

Trace Generatorprovides adjustments for trace size and locality of reference. . . . 124

6.2 Parameter filesrepresent prefix pair length distributions using a combination of a

total prefix length distribution and source prefix length distributions for each non-

zero total length. 128

6.3 Pseudocode forFilter Set Generator. 131

6.4 Prefix pair length distribution for a synthetic filter set of 64000 filters generated with

aparameter filespecifying 16-bit prefix lengths for all addresses. 134

6.5 Prefix pair length distributions for a synthetic filter set of 64000 filters generated

with a parameter filespecifying 16-bit prefix lengths for all addresses and various

values of smoothing parameterr. 136

6.6 Prefix pair length distribution for a synthetic filter set of 64000 filters generated with

the ipc1parameter filewith smoothing parametersr = 0 andr = 4. 137

6.7 Average scope of synthetic filter sets consisting of 16000 filters generated with pa-

rameter files extracted from filter setsacl3, fw5, andipc1, and various values of the

smoothing parameterr. 138

xiv

6.8 Example of sampling from a cumulative distribution using a random variable. Dis-

tribution is for the total prefix pair length associated with the WC-WC port pair

class of the acl2 filter set. A random variable equal to 0.5 chooses 44 as the total

prefix pair length. 138

6.9 Scope applies a biasing function to a uniform random variable. 140

6.10 Example of sampling from a cumulative distribution using a random variable. Dis-

tribution is for the total prefix pair length associated with the WC-WC port pair

class of the acl2 filter set. A random variable equal to 0.5 chooses 44 as the total

prefix pair length. 141

6.11 Average scope of synthetic filter sets consisting of 16000 filters generated with pa-

rameter files extracted from filter setsacl3, fw5, andipc1, and various values of the

scope parameters. 142

6.12 Pseudocode forTrace Generator. 144

6.13 Generic model of a packet classifier. .. . 146

7.1 Example configuration ofDistributed Crossproducting of Field Labels(DCFL);

field search engines operate in parallel and may be locally optimized; aggregation

nodes also operate in parallel; aggregation network may be constructed in a variety

of ways. 151

7.2 Example aggregation node for source and destination address fields.153

7.3 Example of variable aggregation network cost for different aggregation network

constructions for packet classification on three fields. 155

7.4 Generalized DCFL aggregation network for a search ond fields. 156

7.5 An example of splitting a 6-bit address field; maximum number of matching labels

per field is reduced from five to three. 158

7.6 Example of an aggregation node using aBloom Filter Arrayto aggregate field label

setFi(x) with label setF1,...,i−1(a, . . . , w). 160

7.7 Example of an aggregation node usingMeta-Label Indexingto aggregate field label

setFi(x) with meta-label setF1,...,i−1(a, . . . , w). 162

7.8 Block diagram of range matching using parallel search engines for each portclass. 164

7.9 Pseudocode forDCFL update (add). 166

7.10 Pseudocode forDCFL update (delete). 166

7.11 Performance results for 12 real filter sets; left-column shows worst-case sequential

memory accesses (SMA), average SMA, and memory requirements in bytes per

filter (BpF) for aggregation network optimized for worst-case SMA; right-column

shows same results for aggregation network optimized for average-case SMA; call-

outs highlight three specific filter sets of various sizes and types (filter set size given

in parentheses). 169

xv

7.12 Performance results for synthetic filter sets containing 10k, 20k, and 50k filters,

generated with parameter files from filter setsacl5andfw5; call-outs highlight most

pronounced effects (number of filters given in parentheses).170

7.13 Performance results for synthetic filter sets containing 16k filters, generated with

the ipc1 parameter filewith scope parameterss {-1,0,1}; call-outs highlight most

pronounced effects (scope parameter given in parentheses); note that these filter sets

are used in the evaluation of theClassBenchtools suite in Figure 6.4.2. 172

7.14 Performance results for real filter sets (acl2 andfw1) using theField-Splittingopti-

mization; call-outs highlight most pronounced effects (field overlap threshold given

in parentheses). 173

7.15 Performance results for synthetic filter sets containing 16k filters, generated with

parameter file from filter setacl5 with extra filter fields; call-outs highlight most

pronounced effects (number of filter fields given in parentheses).174

7.16 Contrast between unique field value labels inDistributed Crossproducting of Field

Labels(DCFL) and equivalence class identifiers (eqIDs) in Recursive Flow Classi-

fication; example shows two fields of ad field search. Squares[a . . . l] represent the

unique projections of two fieldsx andy for all filters in a filter table. 177

8.1 Potential implementation architecture forDistributed Crossproducting of Field Labels.182

A.1 Source address branching probability and skew for filter set ipc1.184

A.2 Destination address branching probability and skew for filter set ipc1. 185

A.3 Source address branching probability and skew for filter set fw1. 186

A.4 Destination address branching probability and skew for filter set fw1. 187

A.5 Distribution of 5-tuple scope for filters in filter sets acl4 and ipc1. 188

A.6 Distribution of 5-tuple scope for filters in filter sets fw1 and fw5. 189

xvi

Acknowledgments

I not only use all the brains that I have, but all that I can borrow.
Woodrow Wilson, 28th President of the United States of America

My humble measure of intelligence and creativity are not solely responsible for the “novel contri-
butions to the body of knowledge” contained in this dissertation. I have been blessed many times
over with loving and supportive family and friends, and a long line of dedicated teachers and men-
tors. The fruit of this dissertation is a direct result of their selfless acts on my behalf. While it is
impossible (and overly tedious) to thank everyone, I will attempt to make mention of those most
directly involved in my graduate education and those who kept me sane and happy throughout this
adventure.

I would like to start by thanking those serving on my dissertation committee. Inexpressible
thanks go to my research advisor, Dr. Jonathan S. Turner, for his tremendous patience and diligent
mentorship. I sincerely appreciate the academic freedom he provided throughout my graduate stud-
ies, especially early in my studies when I was a rather naı̈ve researcher. His consummate emphasis
on clarity and understanding nurtured and encouraged me to produce the highest quality research
that I could. Were it not for my academic advisor, trusted friend, and savvy agent, Dr. William
D. Richard, I most likely would not have become a graduate student at Washington University. I
will forever be thankful for his selfless actions to provide me with wonderful opportunities to learn
and contribute. His valued advice always goes well beyond the realms of academics and research;
he provides truly useful wisdom. I would like to thank Dr. John Lockwood for offeringvaluable
suggestions and insight, supporting a portion of my graduate studies, involving me in the early de-
velopment of the Field-programmable Port eXtender (FPX), and demonstrating a commitment and
enthusiasm for making concepts “real” in hardware. I would like to thank Dr. Robert E. Morley
for serving on my proposal committee. I will always remember his engineering mantra, “there’s
no such thing as magic”, and his probing question about the status of my design projects, “would
you get on the airplane?” It has also been an honor to have Dr. Fred U. Rosenberger as a professor
and member of my committee. I will always value his insight into fundamental aspects of digital
circuit design, healthy skepticism of performance claims (I highly recommend viewinghis “Gallery
of Perpetual Motion”), and wise advice to employ due caution when designinganything. Finally, I
would like to thank Dr. Daniel R. Fuhrmann for serving on my committee and offeringhis insight
on short notice.

A number of other Washington University faculty and Applied Research Laboratorystaff
have generously provided their wisdom, encouragement, and assistance. Specifically, I would like

xvii

to thank John DeHart for his enthusiasm, patience, and invaluable assistance with verification and
performance measurement of the Fast IP Lookup (FIPL) search engine. I am an appreciative benefi-
ciary of his vast engineering talent. Many thanks go to Dave Zar for providing invaluable assistance
with Mentor Graphics and Xilinx CAD tools, answering many VHDL questions, and giving me my
first research job, publishing opportunity, and conference presentation experience.

My graduate student experience was significantly enhanced by the wonderfully talented
group of graduate students in ARL. I would like to sincerely thank Jeyashankher Ramamirtham
for being an amiable office-mate and tolerating my numerous interruptions and requests for help
with C++ code debugging. I would like to thank Ed Spitznagel for offering his invaluable in-
sight to countless discussions on packet classification techniques, providing assistance withfilter
set parsing, and being a willing and responsive test case for myClassBenchtools. Many thanks to
(Dr.) Tilman Wolf for participating in many lively discussions over coffee and fosteringa vibrant
“culture” in the laboratory and department. Likewise, I would like to thank (Dr.) Dan Decasper
and (Dr.) Ralph Keller for fostering avery vibrant “culture” when they were at Washington Uni-
versity. Thanks to Anshul Kantawala and the rest of the lunchtime crowd for many enlightening
discussions/arguments. Finally, thanks to all the ARL “fools” (you know who you are) for making
graduate student life more fun than it ought to be.

I also would like to acknowledge William Eatherton and Zubin Dittia as the developers of the
Tree Bitmapalgorithm. Their design efforts and analyses made a portion of this research possible. I
would like to acknowledge Todd Sproull as the developer of the control software and web interfaces
for the FIPL search engine. I also would like to thank Tucker Evans and Ed Spitznagel for their
contributions to the FIPL Memory Manager software. I would like to thank Sarang Dharmapurikar
and Praveen Krishnamurthy for introducing me to Bloom filters and inviting me to work with them
in developing the “Longest Prefix Matching using Bloom Filters” technique. I would like to thank
Venkatachary Srinivasan, William Eatherton, and others for making several real filter sets available
for study.

I would also like to send my sincere thanks “across the pond” to Andreas Herkersdorf and
other members of the Network Processor Hardware team at the IBM Zurich Research Laboratory for
a rewarding educational and cultural experience. I thoroughly enjoyed my summer in Switzerland
and gained a new level of respect for my peers in the international research community.

On a more personal note, I would like to offer my most heartfelt thanks to my wife, Sara
Jane Taylor. Her love and companionship have brought me immeasurable joy over the past three
years. It has been a tremendous blessing to have someone to empathize with me in thechallenges
of a doctoral program. I would like to thank my parents who have offered consummate support
and encouragement not only in my five years as a graduate student, but throughout my 24 years of
formal education. It is impossible to list all that they have done for me, for like God’slove, so much
of it goes unnoticed and unacknowledged. So, I offer my thanks for everything I have forgotten
to thank them for, and specifically: helping me with countless homeworks, lauding myachieve-
ments, offering consolation in my defeats, sending me to college, and being shining examples of
loving parents. I also offer heartfelt thanks to my dear friends who have been an essential source of
inspiration, support, refreshment, and guidance.

xviii

Our scientific power has outrun our spiritual power. We have guided missiles and
misguided men.
Martin Luther King Jr.

I offer my eternal thanks and praise to the Lord Jesus Christ for the saving love and mercy that He
demonstrates every day of my life. He has redeemed my life from countless pits, continues to freely
extend His grace to me, and showers me with undeserved blessings. All of the contributions and
novel ideas in this dissertation are products of His grace in response to my prayers whenI reached
the end of my natural ability. I also would like to thank my brothers and sisters in Christ at New
City Fellowship of St. Louis for their companionship, discipleship, and prayers.

David Edward Taylor

Washington University in Saint Louis
August 2004

xix

Preface

The Internet - a conglomeration of military, academic, and commercial computercommunication

networks - is arguably the most pervasive technology in recent history. Started as an experimental

project by the Defense Advanced Research Projects Agency (DARPA) of the United States Depart-

ment of Defense in 1973, the Internet continues to expand and diversify [1]. The scope of its use has

moved beyond ubiquitous communication and dissemination of information to include new com-

mercial, academic, and private-sector services. Originally the brainchild of the research community

and a novelty for the technology hobbyist, the Internet has radically transformed the way the world

communicates. It has become essential infrastructure for the global economy, entrenched itself in

the cultures of industrialized nations, and penetrated the most remote locations on earth.

While statistics regarding Internet size and use are notoriously difficult to pin down, even the

rough estimates are staggering. As of January 2004, there were approximately 233 million Internet

hosts [2]. A host refers to any device communicating over the Internet: personal computers, work-

stations, servers, Personal Digital Assistants (PDAs), etc. At that time, the United States accounted

for 144 million hosts with over seven thousand Internet Service Providers (ISPs). Roughly 945mil-

lion people use the Internet world-wide, and the number of users is projected to exceed 1.1 billion in

2005 [3]. Spending for online content increased to $1.56 billion in 2003 [4], and consumers trans-

acted over $2.2 billion over the Internet in the one week period following the Thanksgiving holiday

in 2003 [5]. These figures could easily double in the next few years as the Internet penetrates the

two most populous countries in the world - India and China.

The growth and diversification of the Internet imposes increasing demands on the perfor-

mance and functionality of network infrastructure. The Internet may be thought of asa global

postal system for delivering digital letters, or packets; thus, the task of packet forwarding is akin to

sorting mail. In the context of the Internet, the challenge is that packets are transmitted at roughly

the speed of light and arrive at rates exceeding a hundred million packets per second. Furthermore,

routers, the devices responsible for the switching and directing of traffic in the Internet, mayneed

to sort packets into thousands of different “bins” by consulting a complex directory containing tens

of thousands of entries. Routers are being called upon to not only handle increased volumes of

traffic at higher speeds, but also impose tighter security policies and provide support for a richer

set of network services. A critical issue in realizing the latter set of goals is identifying the traffic

belonging to a particular flow or set of flows. A flow may be thought of as the communication traffic

xx

generated by a specific application traveling between a specific set of hosts or subnetworks. Flow

identification is computationally intensive and the task is complicated by the continuallyincreasing

volume and speed of traffic traversing routers.

In this dissertation, we address the packet forwarding and flow identification problems, more

commonly known as route lookup and packet classification. Due to their fundamental role in the

functionality and performance of Internet routers, both problems are well-studied. Despitethe ener-

getic attention of a broad community of researchers in industry and academia, there remains a need

for good solutions. In this context, a solution’s “goodness” is evaluated along the classical engi-

neering criteria of performance, size, cost, and power consumption. The contributions of this work

include a high-performance implementation of a route lookup search engine, an in-depth study of

the filter sets used to classify packets, a suite of performance evaluation tools, and a new algorithm

for packet classification that scales to larger filter sets and more complex filters.

The value of this work goes beyond prototypes, research tools, and algorithms of academic

interest. A number of companies are beginning to offer packet classification searchengines as

products, and the industry is also gaining interest and investing in algorithmic solutions to the packet

classification problem. According to a leading market analyst, the search engine device market grew

14% from $83 million in 2002 to $95 million in 2003 [6]. More profound than the total market

growth is that the leading company offering algorithmic search engines gained 11%market share

while the leading TCAM vendor lost 18% market share. Ternary Content AddressableMemory

(TCAM) is a memory technology that searches all entries in the filter set in a single cycle. This

strategy results in fast packet classification, but the devices are extremely expensiveand power

hungry.

xxi

1

Chapter 1

Introduction

Computer Science is no more about computers than astronomy is about telescopes.

Edsger W. Dijkstra

The world is in the midst of a major paradigm shift in the role and importance of communica-

tions technology. Many contemporary historians have already dubbed this the “Information Age”.

Codified by the protocols produced by the DARPA Internet Architecture project begun in 1973,

the Internet has emerged as a global communications service of ever increasing importance. The

expanding scope of Internet users and applications requires network infrastructure to carry larger

volumes of traffic, tightening already challenging performance constraints. This dissertation ad-

dresses the searching tasks performed by Internet routers in order to forward packets andapply

network services to packets belonging to a particular traffic flows. As these searching tasks must be

performed for each packet traversing the router, the speed and scalability of the solutions to these

problems largely determine the realizable performance of the router, and hence the Internet as a

whole.

1.1 State of the Internet

The Internet refers to the global “network of networks” that utilizes the suite of internetworking

protocols developed by the DARPA Internet Architecture project initiated in 1973. The original

aim of this project was to enable communication across the original ARPANET and the ARPA

packet radio network, but the original architects were tasked with developing protocols to enable

communication across a wide variety of heterogeneous networks [1]. Due to the nature of the ARPA

packet radio network and the set of foreseeable applications, the protocols employdatagrams, or

packets, as the fundamental unit of communication, and thus the Internet is a connection-less packet-

switched network. The use of datagrams endowed the protocols with a simplicity and flexibility that

is largely responsible for the tremendous growth and development that the Internethas enjoyed.

2

The building blocks of the Internet are essentially networks, each consisting of combina-

tions of possibly heterogeneous hosts, links, and routers. Figure 1.1 provides a simple example of

the Internet architecture. Hosts produce and consume packets, or datagrams, which contain chunks

of data - a piece of a file, a digitized voice sample, etc. Hosts may be personal computers, worksta-

tions, servers, Personal Digital Assistants (PDAs), IP-enabled mobile phones, or satellites. Packets

indicate the sender and receiver of the data similar to a letter in the postal system. Linksconnect

hosts to routers, and routers to routers. Links may be twisted-pair copper wire, fiber optic cable,

or a variety of wireless link technologies such as radio, microwave, or infrared. Thereare a variety

of strategies for allocating links in a network. These strategies often take into consideration band-

width and latency requirements of applications, geographical location, deployment and operating

costs. The fundamental role of routers is to switch packets from incoming links to the appropriate

outgoing links depending on the destination of the packets. Note that a packet may traverse many

links, often called hops, in order to reach its destination. Due to the transient nature of network

links (failure, congestion, additions, removals), routing protocols allow the routers to continually

exchange information about the state of the network. Based on this information, routers decide on

which link to forward packets destined for a particular host, network, or subnetwork. Note that the

dynamic nature of the routing protocols allows packets from a single host addressed to acommon

destination to follow different paths through the network.

The original Internet protocol suite was comprised of two protocols: the Internet Protocol

(IP) and the Transmission Control Protocol (TCP). The primary function of the Internet Protocol

(IP) is to provide an end-to-end packet delivery service. This task is accomplished by including

information regarding the sender and receiver with each packet transmitted throughthe network,

much like the forwarding and return addresses on a letter. IP specifies the format of this information

which is prepended to the content of each packet. The information prepended by each protocol is

referred to as a packet header and the data content of the packet is referred to as the payload. In order

to uniquely identify Internet hosts, each host is assigned an Internet Protocol (IP) address. Currently,

the vast majority of Internet traffic utilizes Internet Protocol Version 4 (IPv4) which assigns 32-bit

addresses to Internet hosts. As shown in Figure 1.2, the IPv4 header prepended to packets includes

the IP address of the source and destination host. For the purpose of our discussion, theother IPv4

header field of interest is theprotocolfield which identifies the type of transport protocol used by the

sending application. The type of transport protocol determines the format of the transport protocol

header following the IP header in the packet.

Rather than individually assign addresses to every host, IPv4 addresses were allocated to

organizations in contiguous blocks with the intention that all hosts in the same network share a

common set of initial bits. This common set of initial bits is referred to as the network address

or prefix; the remaining set of bits is called the host address. This allocation strategy provided

decentralized control of address allocation; each organization was free to makeallocation decisions

for the addresses within its assigned block. As shown in Figure 1.3, IPv4 addresses were originally

3

Internet Service Provider (ISP)

Internet Service Provider (ISP)

Enterprise Local
Area Network

(LAN)

Enterprise Local
Area Network

(LAN)

Residential Customers

Internet
Backbone
Operator

Core RoutersCore Routers

Edge RoutersEdge Routers

School of
Engineering

School of
Engineering

College of Arts
& Sciences

College of Arts
& Sciences

School of
Medicine

School of
Medicine

School of Law
School of Law

Academic Network

LinksLinksLinks

HostsHostsHosts

Figure 1.1: Simple diagram of Internet architecture.

assigned in blocks of three sizes: Class A (16 million hosts), Class B (64 thousand hosts), and Class

C (254 hosts). Note that there are also blocks of Class D addresses for multicast (one-to-many

transmission) and reserved Class E addresses. Most organizations which required a largeraddress

space than Class C were allocated a block of Class B addresses, even though their network consumed

only a fraction of the addresses. This waste of available address space combined with theexplosive

growth of the Internet prompted concerns over the impending shortage of unassigned IP addresses.

Classless Inter-Domain Routing (CIDR) was introduced in order to prolong the life of IPv4 [7].

CIDR essentially allows a network address to be an arbitrary length prefix of the IP address, thus a

network’s address space may span multiple Class C networks. CIDR also allows routing protocols to

aggregate network addresses in order to reduce the amount of packet forwardinginformation stored

by each router. The wide adoption of CIDR by the Internet community has slowed the deployment

of a more permanent solution, Internet Protocol Version 6 (IPv6) [8]. Among other issues,the

designers of IPv6 addressed the address space issue via the use of 128-bit addresses. Despite the

relief provided by CIDR, adoption of IPv6 is probable given the continued increasein the number

of Internet hosts and deployment initiatives by influential research and commercial groups [9].

The second protocol produced by the original Internet Architecture project, the Transmis-

sion Control Protocol (TCP), provides a reliable transmission service for IP packets. Through the

4

IP Options (if present)

Payload

(Remaining Transport Header Fields)

IP Options

Transport PortsDestination PortSource Port

IP Header

Destination address

Source address

Header checksumProtocolTTL

flagsIdentification

Total length

Fragment Offset

TOSH−lengthVersion

262728293031 012345678910111213141516171819202122232425

Figure 1.2: Format of Internet Protocol Version 4 (IPv4) packet headers with appended transport
protocol header fields.

B 1

Class 31 2425262729 2830

A HostNetwork0

Multicast Address

1

Reserved1111

1

0

11 0

01

0

Network

Network

Host

Host

E

D

C

23 01245679101112 8 322 20 19 1821 17 16 15 14 13

Figure 1.3: Internet Protocol Version 4 (IPv4) address space allocation.

use of small acknowledgment packets transmitted from the destination host to the sourcehost, TCP

detects packet loss and paces the transmission of packets in order to adjust to network congestion.

When the source host detects packet loss, it retransmits the lost packet or packets. At the destina-

tion host, TCP provides in-order delivery of packets to higher level protocols or applications. After

5

initial development of TCP, a third protocol, the User Datagram Protocol (UDP), was added to the

original suite in order to provide additional flexibility. UDP essentially allows applications or higher

level protocols to dictate transmission behavior. For example, a streaming video application may

wish to ignore transient packet losses in order to prevent large breaks in the video stream caused by

packet retransmissions.

Typically, the TCP and UDP transport protocols identify applications using 16-bit port num-

bers carried in the transport header as shown in Figure 1.2. In order to provide servicesto unknown

hosts, servers must have static “contact ports” for each application. Port numbers for widely-used

applications fall in the range of well-knownsystemports which are assigned by the Internet As-

signed Numbers Authority (IANA). Prior to 1993, the well-known port numbers were in therange

[0 . . . 255] while port numbers[256 . . . 1023] were used in Unix systems for Unix-specific services.

Since 1993, port numbers in the range[0 . . . 1023] form the set of well-knownsystemport num-

bers managed by IANA. A “living document” ofsystemport number assignments is available at

http://www.iana.org/assignments/port-numbers . For applications where either

TCP or UDP may be used, port number assignments are typically identical. Unlike servers, clients

only need to guarantee that running applications use free port numbers. The range of port numbers

that may be freely assigned by clients are referred to as ephemeraluserports due to their short-lived

and unmanaged nature. The set ofuserport numbers span the range[1024 . . . 65535]. IANA does

maintain a list ofregistereduser port numbers in the range[1024 . . . 49151] for popular applications

which do not have an assignedsystemport.

1.2 The “Next Generation” Internet

While the protocols produced by the Internet Architecture project achieved the original goals set

forth by DARPA and the pioneering group of researchers, the use of datagrams also presents chal-

lenges for those striving to deploy the next-generation of Internet services, particularly real-time

services such as Internet telephony and video conferencing. It is important to notethat the choice

of datagrams and packet-switching represents a significant departure from the circuit-switched net-

works originally developed and deployed by the telecommunications industry. While the Internet

protocols simplify the task of combining heterogeneous networks, the use of packet-switching com-

plicates the provision of bandwidth and quality of service guarantees. As mentionedabove, packets

flowing between a fixed set of hosts may take different paths through the network. Due to the

heterogeneous nature of the Internet, packets following different paths will likely experience dif-

ferent hop counts and congestion resulting in unpredictable latency and bottlenecklink capacity.

Circuit-switched networks allow data to flow along a fixed path, offering predictable performance.

The major drawback of circuit-switching is the need to negotiate an end-to-end path through the

network. In the case of the Internet, this would require coordination across many heterogeneous

networks operated by independent parties with potentially competing interests.

6

Enabling quality of service and real-time performance guarantees are just a couple of the

challenges facing the community architecting the “next-generation” Internet. As the Internet be-

comes increasingly essential infrastructure for the global economy, security is a major concern. Due

to their roots in academic research, many network protocols were developed and implemented with

little if any consideration of security issues. As a result, many academic and commercial institutions

have suffered from destructive network intrusions by hackers, viruses, and worms. Those holding

a vested interest in the security of the Internet now find themselves in a perpetual “arms race” with

nefarious programmers. Furthermore, IP has essentially become a victim of its own popularity.

The amount of investment in the IP infrastructure by Internet Service Providers (ISPs) has yielded

significant resistance to changing the architecture. This hardening of the Internet architecture also

presents a significant challenge to realizing the “next-generation” Internet.

Despite concerns over security and ossification of the Internet protocols, many in the re-

search community have put forth grand visions of the “next-generation” Internet. While specifics

invariably differ, common goals include: retaining the flexibility provided by IP while enabling the

performance guarantees made available by circuit-switching, providing a level of security that war-

rants greater economic reliance, and enabling more rapid development and deployment of services.

Some go so far as to set forth the goal that the Internet become reliable enough to support the air

traffic control system [10].

1.3 The Packet Classifi cation Problem

In a circuit-switched network, the task of identifying the traffic associated with a particular appli-

cation session between two hosts or subnetworks is trivial from the router’s perspective.A simple,

fixed-length flow identifier can be prepended to each unit of data that identifies the established end-

to-end connection. For each unit of data, a router simply performs an exact match search over a table

containing the flow identifiers for established connections. The table entries for each flow identi-

fier contain the output link on which to forward the data and may also specify quality of service

guarantees or special processing the router should perform.

The flow identification task in a packet-switched network is significantly more challenging.

The primary task of routers is to forward packets from input links to the appropriate output links.

In order to do this, Internet routers must consult aroute tablecontaining a set of network addresses

and the output link ornext hopfor packets destined for each network. Entries in the route tables

change dynamically according to the state of the network and the information exchanged by routing

protocols. The task of resolving the next hop from the destination IP address is commonly referred

to asroute lookupor IP lookup. Finding the network address given a packet’s destination address

would not be overly difficult if the Internet Protocol (IP) address hierarchy were strictly maintained.

A simple lookup in three tables, one for each Class of networks, would be sufficient. Thewide

adoption of CIDR allows the network addresses in route tables to be any size. Performing asearch

7

Search Key:
1000 0000 1111

Longest Match

1000000000*

1000000011*

10001*

*

1011*

01*

00110*

01011*

0001*

100001*

110*

10*

10000000*

Prefix

Figure 1.4: Example of Longest Prefix Matching for a 12-bit search key; all shaded prefixes match
the key, but1000000011∗ is the longest matching prefix.

in 32 tables, one for each possible network address length, for every packet traversing the router is

not a viable option. If we store all the variable-length network addresses in a single table,a route

lookup requires finding the longest matching prefix (network address) in the table for the given

destination address.

Stated formally, a prefix is a subset of initial bits of a key value, the IP destination address

in the case of route lookups. By definition, key values that share a common prefix have the same

contiguous subset of bits starting at the most significant bit. Given a search keyx of sizeb bits,

Longest Prefix Matching (LPM) is a search technique which selects the prefixpi in the set of prefixes

P , such thatpi matchesx andpi has the most specified bits. Each prefixpi can be thought of as the

combination of ab-bit key and a correspondingb-bit mask which identifies the valid bits in the key.

By definition, the mask is contiguous in LPM; i.e. the most significant invalid bit in the mask must

be succeeded by invalid bits. Prefixes can be succinctly represented by simply using the∗ character

to denote the end of the valid bits in the prefix. An example of Longest Prefix Matching (LPM) for

a 12-bit search key is provided in Figure 1.4. Note that the four shaded prefixes match the search

key, but1000000011∗ is the longest matching prefix. The throughput of an Internet router largely

depends upon the speed at which it can perform Longest Prefix Matching (LPM).

If an Internet router is to provide more advanced services than packet forwarding,it must

perform finer grained flow identification. In the Internet context, the process of identifyingthe pack-

ets belonging to a specific application session or group of sessions between a source anddestination

8

Table 1.1: Example filter set of 16 filters classifying on four fields; each filter has an associated flow
identifier (Flow ID) and priority tag (PT) where† denotes a non-exclusive filter; wildcard fields are
denoted with∗.

Filter Action
SA DA Prot DP FlowID PT
11010010 * TCP [3:15] 0 3
10011100 * * [1:1] 1 5
101101* 001110* * [0:15] 2 8†
10011100 01101010 UDP [5:5] 3 2
* * ICMP [0:15] 4 9†
100111* 011010* * [3:15] 5 6†
10010011 * TCP [3:15] 6 3
* * UDP [3:15] 7 9†
11101100 01111010 * [0:15] 8 2
111010* 01011000 UDP [6:6] 9 2
100110* 11011000 UDP [0:15] 10 2
010110* 11011000 UDP [0:15] 11 2
01110010 * TCP [3:15] 12 4†
10011100 01101010 TCP [0:1] 13 3
01110010 * * [3:3] 14 3
100111* 011010* UDP [1:1] 15 4

host or subnetwork is typically referred to as the packet classification problem. Note thatthe route

lookup problem may be viewed as a sub-problem of the more general packet classification problem.

Applications for Quality of Service, security, monitoring, and multimedia communications typically

operate on flows, thus each packet traversing a router must be classified in order to assigna flow

identifier,FlowID. Packet classification entails searching a table of filters for the highest priority fil-

ter or set of filters which match the packet. Filters bind a flow or set of flows to aFlowID. Note that

filters are also referred to as rules in some of the packet classification literature. At minimum, filters

contain multiple field values that specify an exact packet header or set of headers and the associated

FlowID for packets matching all the field values. The type of field values are typically prefixesfor

IP address fields, an exact value or wildcard for the transport protocol number andflags, and ranges

for port numbers. An example filter set is shown in Table 1.1. In this simple example, filters contain

field values for four packet headers fields: 8-bit source and destination addresses, transport protocol,

and a 4-bit destination port number. The packet fields most commonly used for packet classification

are referred to as the IP 5-tuple and include the 8-bit protocol, 32-bit source address, and32-bit

destination address in the IPv4 header as well as the 16-bit source port and 16-bit destination port

in the TCP and UDP transport protocol headers.

Note that the filters in Table 1.1 also contain an explicit priority tagPT and a non-exclusive

flag denoted by†. Priority tags allow filter priority to be independent of filter ordering, providing for

simple and efficient dynamic updates. Non-exclusive flags allow filters to be designated as either

9

exclusive or non-exclusive. A search returns the single highest-priority exclusive filter,allowing

Quality of Service and security applications to specify a single action for the packet. Packets may

also match several non-exclusive filters, providing support for transparent monitoring and usage-

based accounting applications. Note that a parameter may control the number of non-exclusive

filters, r, returned by the packet classifier. Like exclusive filters, the priority tag is used to select

the r highest priority non-exclusive filters. We argue that packet classifiers should support these

additional filter values and point out that many existing algorithms preclude their use. The packet

classification problem may be stated formally as follows:

Given a packetP containing fieldsP j and a collection of filtersF with each filterFi

containing fieldsF j
i , select the highest priority exclusive filter andr highest priority

non-exclusive filters where for each filter∀j : F
j
i matchesP j .

Consider the example of searching Table 1.1 for the highest-priority exclusive filter and single

highest-priority non-exclusive filter,(r = 1), for a packet with the following header field values:

• SA: 1001 1100

• DA: 0110 1010

• Prot: UDP

• DP: 5

The exclusive filters withFlowIDs 3 and 15 match the packet, butFlowID 3 is the highest priority

filter (minimumPT value). The non-exclusive filters withFlowIDs 5 and 7 match the packet, but

FlowID 5 is the highest priority filter. The search would returnFlowIDs3 and 5.

1.3.1 Constraints

Computational complexity is not the only challenging aspect of the packet classification problem.

Increasingly, traffic in large ISP networks and the Internet backbone travels over links with transmis-

sion rates in excess of one billion bits per second (1 Gb/s). Current generation fiber opticlinks can

operate at over 40 Gb/s. The combination of transmission rate and packet size dictate the through-

put, the number of packets per second, routers must support. A majority of Internet traffic utilizes

the Transmission Control Protocol which transmits 40 byte acknowledgment packets. Inthe worst

case, a router could receive a long stream of TCP acknowledgments, therefore conservative router

architects set the throughput target based on the input link rate and 40 byte packet lengths. For

example, supporting 10 Gb/s links requires a throughput of 31 million packets persecond per port.

Modern Internet routers contain tens to thousands of ports. In such high-performance routers, route

lookup and packet classification is performed on a per-port basis.

Many algorithmic solutions to the route lookup and packet classification problems provide

sufficient performance on average. Most techniques suffer from poor performancefor a pathological

10

search. For example, a technique might employ a decision tree where most pathsthrough the tree

are short, however one path is significantly long. If a sufficiently long sequence of packets that

follows the longest path through the tree arrives at the input port of the router, thenthe throughput

is determined by the worst-case search performance. It is this set of worst-case assumptions that

imposes the so-called “wire speed requirement” for route lookup and packet classification solutions.

In essence, solutions to these search problems are almost always evaluated based onthe time it takes

to perform a pathological search. In the context of networks that provide performance guarantees,

engineering for the worst case logically follows. In the context of the Internet, the protocols make no

performance guarantees and provide “best-effort” service to all traffic. Furthermore, theswitching

technology at the core of routers cannot handle pathological traffic. Imagine asufficiently long

sequence of packets in which all the packets arriving at the input ports are destined for the same

output port. When the buffers in the router ports fill up, it will begin dropping packets. Thus, the

“wire speed requirement” for Internet routers does not logically follow from the high-level protocols

or the underlying switching technology; it is largely driven by network management and marketing

concerns. Quite simply, it is easier to manage a network with one less source of packet losses and

it is easier to sell an expensive piece of network equipment when you don’t have to explain the

conditions under which the search engines in the router ports will begin backlogging. It is for these

reasons that solutions to the route lookup and packet classification problems are typically evaluated

by their worst-case performance.

Achieving tens of millions of lookups per second is not the only challenge for route lookup

and packet classification search engines. Due to the explosive growth of the Internet,backbone

route tables have swelled to over 100k entries. Likewise, the constant increase in the number of

security filters and network service applications causes packet classification filter sets to increase

in size. Currently, the largest filter sets contain a few thousand filters, however dynamic resource

reservation protocols could cause filter sets to swell into the tens of thousands. Scalability to larger

table sizes is a crucial property of route lookup and packet classification solutions; it is also a critical

concern for search techniques whose performance depends upon the numberof entries in the tables.

As routers achieve aggregate throughputs of trillions of bits per second, power consumption

becomes an increasingly critical concern. Both the power consumed by the router itself and the

infrastructure to dissipate the tremendous heat generated by the router components significantly

contribute to the operating costs. Given that each port of high-performance routers must contain

route lookup and packet classification devices, the power consumed by search engines is becoming

an increasingly important evaluation parameter. While we do not provide an explicit evaluation

of power consumption in this dissertation, we present solutions to the route lookup and packet

classification techniques that employ low-power memory technologies.

11

1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. The next chapter providesan overview

of single field search techniques, including Longest Prefix Matching (LPM) techniques specifically

developed in response to the route lookup problem. The other types of searches covered in Chap-

ter 2 have relevance for the types of searches dictated by the packet classificationproblem. In order

to demonstrate the level of performance and efficiency achievable via high-performance implemen-

tations of algorithms, Chapter 3 provides a description of the Fast Internet Protocol Lookup (FIPL)

search engine. Targeted to open-platform research systems designed and developed at Washing-

ton University, FIPL is a high-performance hardware implementation of the Tree Bitmap algorithm

developed by Eatherton and Dittia [11].

Chapter 4 presents a survey of solutions to the packet classification problem using a taxon-

omy that frames each solution according to its high-level approach to the problem. Motivated by

recent packet classification algorithms that leverage properties of real filter sets in order to achieve

better performance, Chapter 5 contains a detailed analysis of 12 real filter sets collected from fellow

researchers, Internet Service Providers (ISPs), and a network equipment vendor. Unlike the field of

computer architecture, there are no standard filter sets or performance evaluation toolsthat provide

a uniform scale for comparing competing packet classification solutions. In response, we developed

a suite of benchmarking tools that includes aSynthetic Filter Set Generator. A description and anal-

ysis of theClassBenchtools is contained in Chapter 6. Based on the results of the analysis presented

in Chapter 5, we developed a new packet classification algorithm that leverages the structure of real

filter sets and the capabilities of modern hardware technology. Chapter 7 presents adescription

and performance analysis of the new technique,Distributed Crossproducting of Field Labels, which

provides favorable scaling properties for larger filter sets and more complex filters. We provide a

summary of the contributions in this dissertation and discussion of future work in Chapter 8.

12

Chapter 2

Single-Field Search Techniques

Computers are useless. They can only give you answers.

Pablo Picasso

A variety of searching problems naturally arise in packet classification due to the structure ofpacket

filters. As discussed in Chapter 1, filter fields specify one of three different match conditions on

the corresponding packet header fields:(1) a fully specified value, or exact matching,(2) partially

specified value, or prefix matching,(3) a range of values, or range matching. In this chapter, we

provide a survey of the prominent solutions to these three types of search problems, focusing on the

most frequently used solutions and those solutions specifically tailored to networking applications.

We begin with a survey of solutions for exact matching in Section 2.1, followed by a discussion of

Longest Prefix Matching (LPM) techniques in Section 2.2. LPM has been the focus of intensive

study in recent years due to the fundamental role it plays in IP address lookups for packet forward-

ing. Note that LPM is a special case of the more general All Prefix Matching (APM) problem

discussed in Section 2.3. Various packet classification techniques require an efficientsolution to the

APM problem. Finally, we address the more challenging problem of range matching. Fortunately,

range matching is a problem that arises in many contexts. We provide a survey of range match-

ing solutions drawn from the fields of computational geometry, database design, andnetworking in

Section 2.4.

2.1 Exact Matching

The simplest form of exact matching is the set membership query: determine if keyx belongs to the

set of keysX. Often we wish to store associated information with each keyxi ∈ X such as unique

identifiers or processing directives. In such cases, a search wherex ∈ X returns not only a “yes”

for the membership query, but also the information associated with the matching entry. Exact match

search problems naturally arise in packet classification when filters examine packet fieldssuch as

the transport protocol identifier. Due to the constraints on exact match searches in thenetworking

13

context, namely the size of the key sets and the speed at which the search must be performed, non-

trivial data structures must be used for this task. We provide a brief introduction to two classical

data structures that seek to minimize the number of memory accesses per search, B-trees and hash

tables. Both data structures are capable of supporting set membership queries as well as storing

additional information with each key. We also provide a brief introduction to Bloom filters, adata

structure designed to efficiently represent a set of keys. The space efficiency comes at the price of

allowing false positive matches, as well as not storing any additional information with the keys in

the set.

2.1.1 B-Trees

B-Trees were originally designed to limit the number of accesses to direct access storage units such

as disks and drums [12, 13]. The reduction in I/O operations is achieved by organizing keys in a

tree data structure where the nodes of the tree may have many children. The maximumnumber of

children a node may have is typically referred to as thedegreeof the tree. The number keys stored in

any tree node (except the root node) is bounded by theminimum degreeof the B-Tree. Specifically,

each node in the tree must contain at least(B − 1) keys and at most(2B − 1) keys, whereB ≥ 2.

An example of a B-Tree storing the integer multiples of three is shown in Figure 2.1. Note

that the keys stored in a node are arranged in non-decreasing order. Each internal node also stores

a set of pointers interspersed with the keys. Each pointer points to a child node storing keys greater

than the key to the “left” of the pointer and less than or equal to the key to the “right”of the pointer.

Note that each node may also store additional information for each key1 Finally, the heighth of a

B-Tree containingn keys is bounded by:

h ≤ logB

n + 1

2
(2.1)

Thus, given a maximum table size the value ofB can be selected to meet a given access budget. Note

that we assume a pointer to additional data may be stored along with each key. Another common

B-Tree organization stores all pointers to additional data in the leaves and only storeskeys and child

pointers in the internal nodes in order to maximize the branching factor of the internal nodes.

2.1.2 Hashing

Hashing is a technique that can provide excellent average performance when the number of keys,

n, in the setX is much less than the number of keys,|U |, in the universe of possible key values,U .

For example, assume thatX contains 100 keys where the keys may take on any value in the range

[0 : 65535], i.e. a 16-bit unsigned integer. We could simply allocate a table with 65,536 entries

and use the value of the keyx as an index into the table, but obviously this is very wasteful. This

1Each B-Tree node could also store a pointer to a table of information that could be indexed by the matching key’s
position in the node.

14

3 6

9 18

12 15 21 24 27

30

39 48 57

33 36 42 45 51 54 60 63

Figure 2.1: Example of a B-Tree storing multiples of three, wheret = 3.

technique,direct addressing, is only viable when the number of keysn in the setX approaches the

number of possible key values|U |.

The classical solution to this problem is to map the key valuex to a narrower range of values

that can be used to index a smaller table. In order to perform the mapping function, ahash function,

h(x), is computed on the key value. The resulting value is used as an index into ahash tableof size

[0 : m − 1] wherem � |U |. Ideally, the hash function uniformly distributes alln keys across the

m slots in the hash table. This search method, calledhashing, has been extensively studied and is

given thorough treatment by a number of computer science textbooks [12, 13].

There is a variety of methods for constructing hash functions. Often, the low-order bits

of key values are sufficiently uniform in distribution such that thehash indexmay be constructed

by selecting low order bits of the key. Such hash functions are trivial to construct in hardware.

Figure 2.2 shows an example of using the four low-order bits of the key as a hash index for the same

integer multiples of three used in the B-Tree example in Figure 2.1. Note that whenn is greater than

m and/or the distribution of keys across the hash table is not uniform, thencollisionsoccur. In our

example, we use a common collision resolution technique calledchaining, where keys that map to

the samehash indexform a linked list. The ratio of keys to hash table slots is referred to as theload

factor, α = n
m , which specifies the average number of keys in a chain. Thus, the average search

time for a hash table where chaining is used for collision resolution isΘ(1 + α). There is a variety

of much more sophisticated hash functions and collision resolution techniques. We refer the reader

to the previously mentioned textbooks for a more complete discussion [12, 13].

2.1.3 Bloom Filters

A Bloom filter is a data structure used for efficiently representing a set of keys. Via implicit repre-

sentations of the keys in the set, the data structure supports membership queries but is not capable

of storing additional information for each stored key. This technique was formulated byBurton

H. Bloom in 1970 [14], and has received renewed attention in the research community for various

applications such as web caching, intrusion detection, and content based routing[15]. A Bloom

filter is essentially a bit-vector of lengthm where a keyx is represented by a subset of them bits.

15

H(x)

0000

0001

0010 18

0011 3

0100

0101

0110 6

0111

1000

1001 9

1010

1011

1100 12

1101

1110

1111 15

21

24

48

27

30

33

36

39

42

45

54

51

57

60

63

51

Figure 2.2: Example of hashing with chaining using the four low-order bits as a hash index.

0 0 0 0 0 00 0 1 0 1 0 0 01 0 1 1 1 0 0 11 0

Bloom Filter

insert
x

h1(x) h2(x) h3(x) h1(x) h2(x) h3(x)

insert
y

h1(x) h2(x) h3(x)

k hash functions

Figure 2.3: Example of inserting two keys,x andy, into a Bloom filter.

Given a set of keysX with n members, we insert a keyxi ∈ X into the Bloom filter as follows2.

We computek hash functions onxi, producingk values in the range[0 : m − 1]. Each of these

values addresses a single bit in them-bit vector, hence each keyxi causesk bits in them-bit vector

to be set to 1. Figure 2.3 provides an example of inserting two keys into a Bloom filter. Note that if

one of thek hash values addresses a bit that is already set to 1, that bit is not changed.

Querying the filter in order to determine if a given keyx belongs to the setX is similar

to the insertion process. Given keyx, we generatek hash indices using the same hash functions

2Inserting a key into a Bloom fi lter is also referred to as “programming” the fi lter in the literature.

16

1 1 1 0 0 11 0

query
x

h1(x) h2(x) h3(x) h1(x) h2(x) h3(x)

query
z

h1(x) h2(x) h3(x)

1 1 1 0 0 11 01 1 1 0 0 11 0

query
w

non-member member member
false positive

Figure 2.4: Example of querying a Bloom filter;w is a non-member,x is a correct match;z is a
false positive match.

used to insert keys into the filter. We check the bit locations corresponding to thek hash indices

in them-bit vector. If at least one of thek bits is 0, then we declare the key to be a non-member

of the set. If all the bits are found to be 1, then we claim that the key belongs to the setwith a

certain probability. If we find allk bits to be 1 andx is not a member ofX, then it is said to be a

false positive match. This ambiguity in membership comes from the fact that thek bits in them-bit

vector can be set by any of then members ofX. Thus, finding a bit set to 1 does not necessarily

imply that it was set by the particular key being queried. However, finding a 0 bitcertainly implies

that the key does not belong to the set, since if it were a member then allk-bits would have been set

to 1 when the key was inserted into the Bloom filter. Examples of a non-match, correctmatch, and

false positive match are shown in Figure 2.4.

The following is a derivation of the probability of a false positive match,f . The probability

that a random bit of them-bit vector is set to 1 by a hash function is simply1
m . The probability that

it is not set is1− 1
m . The probability that it is not set by any of then members ofX is (1− 1

m)nk.

Hence, the probability that this bit is found to be 1 is1 − (1 − 1
m)nk. For a key to be declared a

possible member of the set, allk bit locations generated by the hash functions need to be 1. The

probability that this happens,f , is given by

f =

(

1−

(

1−
1

m

)nk
)k

(2.2)

for large values ofm the above equation reduces to

f ≈
(

1− e
−nk
m

)k
(2.3)

17

Since this probability is independent of the input key, it is termed thefalse positiveprobability. The

false positive probability can be reduced by choosing appropriate values form andk for a given

size of the member set,n. For a given ratio ofmn , the false positive probability can be reduced by

adjusting the number of hash functions,k. In the optimal case, when false positive probability is

minimized with respect tok, we get the following relationship

k =

{⌊

m

n
ln 2

⌋

,

⌈

m

n
ln 2

⌉}

(2.4)

The false positive probability at this optimal point is given by

f =

(

1

2

)k

(2.5)

It should be noted that if the false positive probability is to be fixed, then the size of the filter, m,

needs to scale linearly with the size of the key set,n.

One property of Bloom filters is that it is not possible to delete a key stored in the filter.

Deleting a particular entry requires that the correspondingk hashed bits in the bit vector be set to

zero, which would disturb other keys programmed into the filter which hash to any of these bits.

In order to solve this problem the idea of theCounting Bloom Filterwas proposed by Fan, et.

al. [16]. A Counting Bloom Filter maintains a vector of counters corresponding to each bit in the

bit-vector. Whenever a key is added to or deleted from the filter, the counters corresponding to the

k hash values are incremented or decremented, respectively. When a counter changes from zero to

one, the corresponding bit in the bit-vector is set. When a counter changes from one to zero, the

corresponding bit in the bit-vector is cleared. Note that maintaining counters significantly increases

the storage requirements. If updates to the set of stored keys arrive at a reasonable rate, then the

counters may be stored in slower, cheaper memory technology such as DRAM.

2.2 Longest Prefi x Matching (LPM)

Longest Prefix Matching (LPM) has received significant attention in the literature over the past ten

years. This is due to the fundamental role it plays in the performance of Internet routers.Due to

the explosive growth of the Internet, Classless Inter-Domain Routing (CIDR) was widely adopted

to prolong the life of Internet Protocol Version 4 (IPv4) [7]. Use of this protocol requires Internet

routers to search variable-length address prefixes in order to find the longest matching prefix of the

IP destination address and retrieve the corresponding forwarding information, or “next hop”, for

each packet traversing the router. This computationally intensive task, commonly referred to as IP

Lookup, is often the performance bottleneck in high-performance Internet routers. We will use IP

lookup as the example application for Longest Prefix Matching for the remainder of thesection. The

18

35

6

33

54
First Match 7

121000 0000 1111
Address:

Next Hop: 7

Prefix Next Hop

01011*

*

51

01* 21

1000000000*

1000000011*

10000000*

100001*

10001*

0001* 68

00110* 3

1011* 1

110* 9

10* 7

Figure 2.5: Example of Longest Prefix Matching for a 12-bit address using linear search; prefixes
are sorted in decreasing order of prefix length; the first matching prefix is the longest.

following sections discuss the major developments in LPM techniques for IP lookup, categorized

by their general approach to the problem.

2.2.1 Linear Search

If the set of prefixes is small, a linear search through a list of the prefixes sorted in order ofdecreasing

length is sufficient. The sorting step guarantees that the first matching prefix in the list is the longest

matching prefix for the given search key. An example of Longest Prefix Matching (LPM) using

linear search is shown in Figure 2.5. Linear search is commonly touted as the most memory efficient

of all LPM techniques in that the memory requirements areO(N) whereN is the number of prefixes

in the table. Note that the search time is alsoO(N), thus linear search is not a viable approach for

IP lookup when the set of prefixes grows beyond a few dozen prefixes.

2.2.2 Content Addressable Memory (CAM)

Many commercial router designers have chosen to use Content Addressable Memory (CAM) for IP

address lookups in order to keep pace with optical link speeds despite their largersize, cost, and

power consumption relative to Static Random Access Memory (SRAM). CAMs minimize the num-

ber of memory accesses required to locate an entry by comparing the input key against all memory

words in parallel; hence, a lookup effectively requires one clock cycle. While binary CAMs perform

19

well for exact match operations and can be used for route lookups in strictly hierarchical address-

ing schemes [17], the wide use of address aggregation techniques like CIDR requiresstoring and

searching entries with arbitrary prefix lengths. In response, Ternary Content Addressable Memories

(TCAMs) were developed with the ability to store an additional “Don’t Care” state thereby enabling

them to retain single clock cycle lookups for arbitrary prefix lengths. We believe that this “brute-

force” approach is no longer necessary for IP lookup due to the significant advances that have been

made in algorithmic LPM techniques. TCAMs remain competitive choices for packet classification

on multiple fields; therefore, we provide a more detailed analysis of these devices in Section 4.2.2.

2.2.3 Trie Based Schemes

Search techniques which build decision trees using the bits of prefixes to make branching decisions

allow the worst-case search time to be independent of the number of prefixes in the set.An example

of a binary trie3 constructed from the set of prefixes in Figure 1.4 is shown in Figure 2.6. Shaded

nodes denote a stored prefix; the corresponding next hop is shown adjacent to thenode. A search

is conducted by traversing the trie using the bits of the address, starting with the most significant

bit. As in the previous examples, the best matching prefix is1000000011∗ and the corresponding

next hop is seven. Note that the worst-case search time is nowO(W), whereW is the length of the

address and maximum prefix size in bits.

One of the first IP lookup techniques to employtries is Sklower’s implementation of a

Patricia trie in the BSD kernel [18]. The Patricia trie is a binary radix tree that compresses paths

with one-way branching into a single node. The BSD kernel implementation was designed to be

general enough to support any hierarchical routing scheme or link layer addresstranslation such as

the Address Resolution Protocol (ARP). It assumes contiguous masks and bounds the worst case

lookup time toO(W). While paths may be compressed, only one bit of the address is examined

at a time during a search resulting in search rates that do not meet the needs of high-performance

routers.

In order to speed up the lookup process, multi-bit trie schemes were developed which per-

form a search using multiple bits of the address at a time. Srinivasan and Varghese introduced

two important techniques for multi-bit trie searches,Controlled Prefix Expansion(CPE) andLeaf

Pushing[19]. Controlled Prefix Expansionrestricts the set of distinct prefix lengths by “expanding”

prefixes shorter than the next distinct length into multiple prefixes. This allows the lookup topro-

ceed as a direct index lookup into tables corresponding to the distinct prefix length, or stride length,

until the longest match is found. The technique ofLeaf Pushingreduces the amount of information

stored in each table entry by “pushing” information about the best matching prefix along the paths to

leaf nodes. As a result each leaf node need only store a pointer or next hop information. While this

technique reduces memory usage, it also increases incremental update overhead. The authors also

3A trie is an ordered tree in which the key stored at each node is specifi ed by its position in the tree.

20

35

7

9

1

3 51

68

21

54

12 7

33

6

0

0 0

1

1

1

Address: 1000 0000 1111

0

0

0

0

0

1

1

1

1

0

0

0

0

10

1

11

0 1

1

1

0

Figure 2.6: Example of Longest Prefix Matching using a binary trie.

discuss variable length stride lengths, optimal selection of stride lengths, and dynamic programming

techniques.

Gupta, Lin, and McKeown simultaneously developed a special case of CPE specifically

targeted to hardware implementation [20]. Arguing that DRAM is such a plentiful andinexpensive

resource, their technique sacrifices large amounts of memory in order to bound thenumber of off-

chip memory accesses to two or three. Their basic scheme is a two level “expanded” trie with an

initial stride length of 24 and second level tables of stride length eight. Given that random accesses

to DRAM may require up to eight clock cycles and current DRAMs operate at less than half the

speed of SRAMs, this technique can be out-performed by techniques utilizing SRAM andrequiring

fewer than 10 memory accesses.

Other techniques such asLulea [21] and Eatherton and Dittia’sTree Bitmap[11] employ

multi-bit tries with compressed nodes. In Chapter 3 we provide a detailed description and analysis

of a scalable hardware implementation ofTree Bitmap. We also provide an introduction to multi-bit

tries, a complete description of theTree Bitmapalgorithm, and a comparison betweenTree Bitmap

and other approaches such asLulea. TheLuleascheme essentially compresses an expanded, leaf-

pushed trie with stride lengths 16, 8, and 8. In the worst case, the scheme requires 12 memory

accesses; however, the data structure only requires a few bytes per entry. While extremely compact,

21

the Lulea scheme’s update performance suffers from its implicit use of leaf pushing. TheTree

Bitmap technique avoids leaf pushing by maintaining compressed representations of the prefixes

stored in each multi-bit node. It also employs a clever indexing scheme to reduce pointer storage

to two pointers per multi-bit node. Storage requirements forTree Bitmapare on the order of six

to eight bytes per address prefix, worst-case memory accesses can be held to less thaneight with

optimizations, and updates require modifications to a few memory words resulting in excellent

incremental update performance [22].

The fundamental issue with trie-based techniques is that performance and scalability are

fundamentally tied to address length. As many in the Internet community are pushing towidely

adopt IPv6, it is not clear that trie-based solutions will be capable of meeting performance demands.

In the following sections, we discuss LPM algorithms that avoid this linear relationship with address

length.

2.2.4 Multiway and Multicolumn Search

Several other algorithms exist with attractive properties that are not based on tries. TheMultiway

and Multicolumn Searchtechniques presented by Lampson, Srinivasan, and Varghese are designed

to optimize performance for software implementations on general purpose processors [23]. The pri-

mary contribution of this work is mapping the longest matching prefix problem to a binarysearch

over the fixed-length endpoints of the ranges defined by the prefixes. By specifyinga set of con-

tiguous initial bits, prefixes define ranges of values. For example, if10∗ is a prefix for a four bit

field, then it defines the range[1000 : 1011]. Prefixes never define overlapping ranges, only nested

ranges. For example,[0 : 3] and[2 : 4] are overlapping ranges, whereas[0 : 3] and[1 : 2] are nested

ranges. The authors use this property to develop a binary search technique over the endpoints of the

ranges defined by the prefixes.

The authors also used a popular optimization, a precomputed index array. An example of a

precomputed index array4 for the first three bits of our example prefix set is shown in Figure 2.7. We

begin by storing the prefixes in a binary trie, then perform Controlled Prefix Expansion (CPE) for

a stride length equal to three [19]. The next hop associated with each node at level three is written

to the array slot addressed by the bits labeling the path from the root to the node. If the node has

children, then a pointer to a binary trie containing the children is stored. The structure is searched

by using the first three bits of the address to index into the array. If no pointer is stored, thenthe

next hop at the array index is returned as the next hop. If a pointer is stored, thenthe next hop at the

array index is remembered as the best match thus far and the search continues using the binary trie

identified by the pointer. Note that this data structure requires2a × q bits of memory wherea is the

number of bits used to index the array andq is the number of bits required for next hop and pointer

storage.

4Precomputed index arrays are also called “initial arrays”and “direct lookup arrays” in the literature

22

111

9

101

7

6

33

1

712

21

010

21

3

011

7

100

35

110

54

35

001

35

000

68

51

1

Address: 1000 0000 1111

0

0

0

01

11

1

0

1

0

0

0 1

1

1

Figure 2.7: Example of a direct lookup array for the first three bits.

Finally, the authors optimize their algorithm based on the memory hierarchy of modern

general purpose processors. The data structures are dimensioned to take advantage ofthe cache

line size of the target processor. Even though it is geared to software implementation, itmay not

be viable for current generation network processors that do not contain full memoryhierarchies. In

general, the approach requiresO(W + log N) time andO(2N) memory, whereN is the number

of prefixes andW is the length of the address. Again, the primary issue with this algorithm is its

linearly scaling relative to address length.

2.2.5 Binary Search on Prefi x Lengths

The most efficient lookup algorithm known, from a theoretical perspective, isBinary Search on

Prefix Lengthswhich was introduced by Waldvogel, et. al. [24]. The number of steps required by

this algorithm grows logarithmically in the length of the address, making it particularly attractive

for IPv6, where address lengths increase to 128 bits. However, the algorithm is relatively complex

to implement, making it more suitable for software implementation than hardware implementation.

It also does not readily support incremental updates.

This technique bounds the number of memory accesses via significant precomputation of the

route table. First, the prefixes are sorted into sets based on prefix length, resulting in a maximum of

W sets to examine for the best matching prefix. A hash table is built for each set, and it is assumed

23

that examination of a set requires one hash probe. The basic scheme selects the sequence of sets to

probe using a binary search on the sets beginning with the median length set. For example: for an

IPv4 database with prefixes of all 32 lengths, the search begins by probing the set with length 16

prefixes. Prefixes of longer lengths direct the search to its set by placing “markers” in theshorter

sets along the binary search path. Going back to our example, a length 24 prefix would have a

“marker” in the length 16 set. Therefore, at each set the search selects the longer set on the binary

search path if there is a matching marker directing it lower. If there is no matching prefixor marker,

then the search continues at the shorter set on the binary search path.

Use of markers introduces the problem of “backtracking”: having to search the upper half

of the trie because the search followed a marker for which there is no matching prefix in alonger set

for the given address. In order to prevent this, the best-matching prefix for the marker iscomputed

and stored with the marker. If a search terminates without finding a match, the best-matching prefix

stored with the most recent marker is used to make the routing decision. The authors also propose

methods of optimizing the data structure based on the statistical characteristics of the route table.

For all versions of the algorithm, the worst case bounds areO(log Wdist) time andO(N×log Wdist)

space whereWdist is the number of unique prefix lengths. Empirical measurements using an IPv4

route table resulted in memory requirement of about 42 bytes per entry.

2.2.6 Longest Prefi x Matching using Bloom Filters

Dharmapurikar, Krishnamurthy, and Taylor introduced the first algorithmic Longest PrefixMatch-

ing (LPM) technique to employ Bloom filters [25]. This approach, which we will refer to asBloom

filter-based IP Lookup(BIPL), is a hardware-based IP lookup solution withaverageperformance

superior to TCAMs. Mitigating worst-case performance requires an initial index array andCon-

trolled Prefix Expansion(CPE) which causesBIPL to become less memory and update efficient.

The performance bottleneck in any longest prefix matching technique is the numberof sequential

memory accesses required per lookup. The key feature ofBIPL is that the performance, as deter-

mined by the expected number of sequential memory accesses required per lookup, can be held to a

constant regardless of address length and number of unique prefix lengths. The approach is equally

attractive for Internet Protocol Version 6 (IPv6) which uses 128-bit destination addresses, four times

longer than IPv4.

A basic configuration ofBIPL is shown in Figure 2.8. It begins by sorting the set of prefixes

into sets according to prefix length. The system employs a set ofW counting Bloom filters, where

W is the maximum number of unique prefix lengths in the prefix set, and associates one Bloom

filter with each unique prefix length. Each filter is “programmed” with the associated set ofprefixes

according to the previously procedure described in Section 2.1.3. It is important to note that while

the bit-vectors associated with each Bloom filter must be stored on-chip, the counters associated

with each filter can be maintained by a separate control processor responsible for route updates.

Separate control processors with ample memory are typical features of high-performance routers.

24

B(1) B(2) B(3)

Bloom filters

B(W)

1 2 3 W

Hash Table Manager

IP address Route Updates

Update Interface

Off−chip Hash Tables

C(1) C(2) C(3) C(W)

counters
Bloom filter

Priority Encoder

Hash Table Interface

Match Vector

Next Hop

Prefix Next Hop

Figure 2.8: Basic configuration of Longest Prefix Matching using Bloom filters, (BIPL).

A hash table is also constructed for each distinct prefix length. Each hash table is initialized with

the set of corresponding prefixes, where each hash entry is a (prefix, next hop) pair. The set of hash

tables is stored in off-chip memory. Given that the problem of constructing hash tablesto minimize

collisions with reasonable amounts of memory is well-studied, the authors assume that probing a

hash table stored in off-chip memory requires one memory access [24].

A search proceeds as follows. The input IP address is used to probe the set ofW on-chip

Bloom filters in parallel. The first bit of the address is used to probe the filter associated with length

one prefixes, the first and second bits of the address are used to probe the filter associated with

length two prefixes, etc. Each filter simply indicates match or no match. By examining the outputs

of all filters, we compose a vector of potentially matching prefix lengths for the givenaddress,

the match vector. Consider an IPv4 example where the input address produces matches in the

Bloom filters associated with prefix lengths 8, 17, 23, and 30; the resultingmatch vectorwould be

[8,17,23,30]. Remember that Bloom filters may produce false positives, but never produce false

negatives; therefore, if a matching prefix exists in the route table, it will be represented inthe match

vector. Note that the number of unique prefix lengths represented in the route table, Wdist, may be

25

less thanW . In this case, the Bloom filters representing empty sets will never contribute a match to

thematch vector, valid or false positive. The search proceeds until a match is found or the vector is

exhausted.

The probability of a false positive is dependent upon the number of prefixes storedin a filter,

the size of the filter, and the number of hash functions used to probe the filter. The authors show that

with a modest amount of on-chip resources for Bloom filters, the average number ofhash probes

per lookup approaches one; therefore, this approach can achieve lookup rates equivalent to those

offered by TCAMs. Given that commodity SRAM devices are denser and cheaperthan TCAMs, this

approach potentially offers lower cost and more power efficient solution. The authors also introduce

asymmetric Bloom filters which dimension filters according to prefix length distribution. A system

configured to support 200,000 IPv4 prefixes with an average number of 1.003 off-chip memory

accesses per lookup, requires 4Mb of on-chip memory and is capable of 332 million lookups per

second using a commodity SRAM device operating at 333 MHz.

2.3 All Prefi x Matching (APM)

Longest Prefix Matching (LPM) is a special case of the general All Prefix Matching (APM) problem.

Instead of returning just the longest matching prefix, the APM problem requires that all matching

prefixes be returned. This problem arises when multi-field search techniques are decomposed into

several instances of single-field search techniques. We provide a survey of multi-field search tech-

niques in Chapter 4.

Note that most trie-based algorithms easily map to the APM problem. The algorithm can

simply return all matching prefixes along the path to the longest matching prefix. Similarly, the

Bloom filter technique can also be easily adapted to perform APM. Referring back to Figure 2.8, the

Priority Encoder can be removed and the Hash Interface simply queries every hash tableassociated

with matching prefix lengths in thematch vector. This does increase the number of hash probes

per lookup; however, as discussed in Chapter 5 the number of prefixes in multi-field search tables

which match an address is typically less than six.

While the trie-based and Bloom filter-based LPM algorithms easily map to APM, it is im-

portant to note that theBinary Search on Prefix LengthsandMultiway and Multicolumn Search

techniques do not readily support APM. The use of markers inBinary Search on Prefix Lengths

naturally directs searches to longer prefixes before examining shorter length prefixes. The same

consequence is experienced by theMultiway and Multicolumn Searchdue to the binary search over

range endpoints. In order to support APM searches using these techniques, we must usea general

technique that allows any LPM algorithm to perform APM. The idea is to perform an LPM search

where stored prefixes contain a pointer to a node in anesting tree, a separate tree of prefixes de-

fined by parent pointers. Figure 2.9 shows an example of anesting treefor the prefixes used in the

LPM example of Figure 1.4. All matching prefixes for a given longest matching prefixare found

26

*

10*

1000 0000 *

1000 0000 00*1000 0000 11*

1000 01*
1000 1*

1011*

0011 0*

0101 1*

01*

0001*
110*

Figure 2.9:Nesting treetechnique for finding all matching prefixes for a given longest matching
prefix.

by simply following parent pointers until the root node is reached. This general technique can be

made memory and update efficient, but does require additional memory accesses to find all match-

ing prefixes. A second technique may be used that does not require additional memory accesses but

sacrifices memory and update efficiency. The idea is to precompute all matching prefixes associated

with each prefix in the set. The list of all matching prefixes is stored with each prefix in the LPM

data structure, thus locating the longest matching prefix returns the list of all matching prefixes.

Note that this suffers from memory and update inefficiency as many prefixes are storedredundantly

in lists and updating an entry in the prefix set may require many updates to lists of all matching

prefixes.

2.4 Range Matching

Range matching problems naturally arise in many searching problems in the areas of networking,

computational geometry, and database design, and there are several forms of range matching prob-

lems. In this section we provide a brief survey of approaches to address the following problem that

arises in packet classification: Given a setX of closed intervals[i, j] and a pointp, find all the inter-

vals inX that containp. This task is an essential part of packet classification, as packet filters may

specify ranges for the source and destination port numbers in packet headers in order to identify a

set of applications. Solutions to this problem typically employ a variant of one of two classical data

structures, the Segment Tree and the Interval Tree [26, 27]. Another option is to convert each closed

interval[i, j] into a set of prefixes, then employ one of the fast Longest Prefix Matching (LPM) algo-

rithms discussed in the previous section [28, 29]. Finally, we describe a recently proposed hardware

solution for range matching.

27

[0:0]
{ f}

0 1 2 3 4 5 7 8 9 12 13 14 15

a

b

c

d

e

f g h i

segments
X

elementary
intervals

Y

FIS Tree
t = 3

[1:2]
{}

[3:3]
{ d}

[4:4]
{ d,g}

[5:7]
{}

[8:8]
{ h}

[9:12]
{}

[13:13]
{ i}

[14:15]
{}

[4:8]
{ b,e}

[0:3]
{ c}

[9:15]
{ b}

[0:15]
{ a}

p = 4

p = 4
S= {d,g,b,e,a}

Figure 2.10: Example of projecting endpoints of intervals to form non-overlapping segments on the
real line, and using theFat Inverted Segment(FIS) Treeto search the set of segments.

2.4.1 Segment Tree

Extensively used in computational geometry, a Segment Tree is a data structure that stores a set of

segments on the real line [30]. For the purpose of our discussion, a set of segments isa set of closed

intervalsX. Segment Trees typically utilize some form of a binary search tree as an underlying

data structure. In order to use such data structures, the endpoints of the segments must beprojected

onto the real line in order to form non-overlappingelementary intervals. Given a set of segmentsX

containing|X| segments, the setY of elementary intervalscontains at most(2|X| − 1) segments.

An example is shown in Figure 2.10.

Balanced binary search trees or splay trees can be used in order to limit the height ofa

binary search tree [31]. When used to store elementary intervals, a Segment Tree can returna set

of matching segmentsS for a given pointp in O(log |Y |) time, where∀[i, j] ∈ S, i ≤ p ≤ j.

Balanced binary search trees enforce a balance condition, such that updates to the data structure

do not cause the balance condition to be violated. Red-black trees are one example of a balanced

binary tree that ensures that every path from the root node to a leaf node is no longer than twice

the shortest path from the root node to a leaf node [31, 13]. Splay trees do not explicitlyenforce a

balance or height condition; rather, they employ a set of heuristics that prescribea series of recursive

restructuring operations each time the splay tree is accessed or updated. These heuristics have been

shown to maintain data structure balance and provide logarithmic amortized search time [31]. While

28

fascinating from a theoretical perspective and useful in other problem domains, we believe that the

real time constraints for packet classification searches preclude the use of splay trees due to the

restructuring operations performed during accesses.

Note that we could precompute the intervals that overlap each segment and store this infor-

mation in the segment tree. While efficient for searching, the update time isO(|Y |) in the worst

case; consider adding or removing intervala. In order to improve the update and search perfor-

mance, Feldman and Muthukrishnan proposed theFat Inverted Segment(FIS) Tree[27]. TheFIS

Treeis a balancedt-ary tree withl levels, wheret = (|Y |)1/l. An example of anFIS Treeis shown in

Figure 2.10. Each nodev represents an intervalI(v) which is the union of the intervals represented

by its children. Leaf nodes represent theelementary intervals. For the purpose of our discussion, the

salient features of theFIS Treeare:(1) the height of the tree can be limited by choosing a sufficient

branching parametert, (2) each nodev only stores an intervalx if I(v) ⊆ x andx ⊂ I(parent(v)).

Note that the choice oft affects the complexity of the branching decision at each internal node5.

The set of segmentsS overlapping a given elementary intervaly can by found by traversing the

path from the leaf representingy to the root of the tree, i.e. the “inverse” path, and appending the

set of segments stored at each nodev to S. An example is shown in Figure 2.10 forp = 4. Letting

M = (2|X| + 1), theFIS TreerequiresO(logt M) search time,O(M logt M) update time, and

O(M logt M) space.

2.4.2 Interval Tree

An Interval Tree stores a set of closed intervalsX using a balanced binary tree as the underlying

data structure [13]. Its primary distinction from the Segment Tree is that the Interval Tree does

not useelementary intervals; each node in the tree stores an intervalx ∈ X. The low endpoint of

the interval is used as the key for the node in the balanced binary search tree. In order to facilitate

faster searches, tree nodes typically store additional variables such as the maximum value of all

the endpoints of the ranges stored in their subtree. An example of an Interval Tree isshown in

Figure 2.11.

Searching for one matching interval for a given pointp is straight-forward. Returning the set

S of all matching intervals forp requires a few extra steps. We first locate the matching interval for

p that is stored at the leftmost node in the tree6. From this node, we perform an in-order walk of the

tree nodes, stopping when we arrive at the last node in the tree or a node whose keyis greater than

p. An example search forp = 4 is shown in Figure 2.11. Letting|S| be the number of matching

intervals, the search requiresO(lg |X|+ |S|) time. The Interval Tree requiresO(lg |X|) amortized

update time andO(|X|) space.

5Feldman and Muthukrishnan propose usingFIS Treesfor a multi-fi eld search; thus the search begins from the leaves
and involves more intermediate steps to support multiple fi elds.

6This can be facilitated by storing the minimum endpoint value in the subtree rooted at each node.

29

[4:15]
b
15

[0:15]
a
15

[0:3]
c
3

[0:0]
f
0

[3:4]
d
4

[8:8]
h
9

[4:8]
e
4

[9:9]
i
9

p = 4

[4:4]
g
4

Figure 2.11: Example of anInterval Treewhere each node stores the maximum endpoint value for
all intervals in its subtree.

2.4.3 Range to Prefi x Conversion

Prefixes define exactly one range on the real number line. The low and high endpoint of the range

defined by a prefix are the minimum and maximum points covered by the prefix. For binary num-

bers, this translates to replacing the masked bits of the prefix with zeros and ones, respectively. For

example, the four bit prefix11∗ defines the range[1100 : 1111] or [12 : 15]. This transform op-

eration is not symmetric, as an arbitrary range may specify multiple prefixes. Specifically, a range

defined on the set ofb-bit numbers will specify at most[2× (b− 1)] prefixes.

For a single-field search on a reasonable number of ranges, this expansion factor isnot

prohibitive. As a result, several packet classification techniques use the range to prefixconversion

technique to solve the range matching subproblem of the general packet classification problem [28,

29]. As discussed in Chapter 4, this conversion can become problematic for multiple-field searches

due to the compounding effect on the expansion factor. Specifically, for a multiple-field filter with

a fields specifying ranges on the set ofb-bit numbers, converting the range fields into prefix fields

results in up to[2×(b−1)]a filters. Finally, we note that Feldman and Muthukrishnan provide a range

to prefix conversion technique for the special case of searchingelementary intervalsby converting

them into prefixes. They show that a set of(n − 1) elementary intervalscan be converted into a

set prefixes containing at most2n prefixes, where an LPM search is used to select theelementary

intervalcontaining a given pointp.

30

2.4.4 Range Matching Circuits

In order to eliminate the aforementioned expansion factor when using Ternary Content Addressable

Memory (TCAM) devices, range matching can be performed directly in hardware [32]. When

implemented in standard CMOS technology, a range matching circuit requires44b transistors where

b is the number of bits required to specify a point in the range. This is considerably more than the

16 transistors per bit required for prefix matching; however, the total hardware resources saved by

eliminating the expansion factor for typical packet filter sets far outweighs the additional cost per

bit for hardware range matching.

31

Chapter 3

Fast Internet Protocol Lookup (FIPL)

Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs

30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps weigh

1.5 tons.

Popular Mechanics, March 1949

In this chapter we provide a detailed description of the design, implementation, and analysis of a

Longest Prefix Matching (LPM) search engine using a compressed multi-bit trie algorithm. This

work provides concrete evidence that high-performance implementations of clever algorithms can

achieve the required search and update rates with efficient use of hardware, memory, and power. It

is important to note that the value of this work reaches beyond the problem of Internet Protocol (IP)

address lookups. As demonstrated in Chapter 7, packet classification techniques can make use of

optimized single-field search engines.

3.1 Introduction

Forwarding of Internet Protocol (IP) packets is the primary purpose of Internet routers. Thespeed

at which forwarding decisions are made at each router or “hop” places a fundamental limit on the

performance of the network. For Internet Protocol Version 4 (IPv4), the forwarding decision is

based on a 32-bit destination address carried in each packet’s header. The use ofClassless Inter-

Domain Routing (CIDR) complicates the lookup process, requiring a lookup engine tosearch a route

table containing variable-length address prefixes in order to find the longest matching prefix for the

destination address in each packet header and retrieve the corresponding forwarding information [7].

In high-performance routers, each port employs a separate LPM search engine. We provide a more

complete introduction to the IP lookup problem in Chapter 1.

As physical link speeds grow and the number of ports in high-performance routers continues

to increase, there is a growing need for efficient lookup algorithms and effective implementations

of those algorithms. Next generation routers must be able to support thousands of optical links

32

each operating at 10 Gb/s (OC-192) or more. Lookup techniques that can scaleefficiently to high

speeds and large lookup table sizes are essential for meeting the growing performance demands,

while maintaining acceptable per-port costs.

Many techniques are available to perform IP address lookups. Perhaps the most common

approach in high-performance systems is to use Ternary Content Addressable Memory (TCAM)

devices. While this approach can provide excellent performance, the performance comes at a fairly

high price due to the exorbitant power consumption and high cost per bit of TCAMrelative to com-

modity memory devices. We provide an overview of LPM algorithms and devices in Section 2.2.

The Fast Internet Protocol Lookup (FIPL) search engine [22], developed at Washington

University in Saint Louis, is an experimental implementation of Eatherton and Dittia’sTree Bitmap

algorithm [11] using reconfigurable hardware and Random Access Memory (RAM). Targeted to an

open-platform research router, FIPL is designed to strike a favorable balance among lookup and

update performance, memory efficiency, and hardware usage. Employing a XilinxVirtex 1000E-7

Field Programmable Gate Array (FPGA) operating at 100MHz and a single Micron 1MB Zero-

Bus Turnaround (ZBT) Synchronous Random-Access Memory (SRAM)1, a single FIPL lookup

engine has a guaranteed worst case performance of 1,136,363 lookups persecond. Interleaving

memory accesses of eight FIPL engines over a single 36 bit wide SRAM interface exhausts the

available memory bandwidth and yields a guaranteed worst case performance of 9,090,909 lookups

per second.

Performance evaluations using a snapshot of the Mae-West routing table resulted in over

11 million lookups per second for an optimized eight FIPL engine configuration. Average memory

usage per entry was 6.3 bytes, which is comparable to the amount of memory required to explicitly

represent an individual prefix. In addition to space efficiency, the data structure usedby FIPL is

straightforward to update, and can support up to 100,000 updates per second withonly a 7.2%

degradation in lookup throughput. Each FIPL engine utilizes less than 1% of the available logic

resources on the target FPGA. While this search engine currently achieves 500 Mb/s oflink traffic

per 1% of logic resources, still higher performance and efficiency is possible with higher memory

bandwidths. Ongoing research seeks to exploit new FPGA devices and more advanced CAD tools

in order to double the clock frequency and, therefore, double the lookup performance. We also are

investigating optimizations to reduce the number of off-chip memory accesses. Another research

effort leverages the insights and components produced by the FIPL implementation for an efficient

route lookup and packet classification engine for an open-platform dynamically extensible research

router [33]. Finally, we provide a brief discussion of lookup techniques closely related toTree

Bitmap in Section 3.7.

1Micron ZBT SRAMs allow a new read/write operation on every clock cycle. In our research system, the SRAMs are
driven by the same 100MHz clock used for the FPGAs; thus, at 10ns per cycle with 36-bit memory words, the SRAMs
provide a random-access throughput of 3.6 billion bits per second (Gb/s).

33

3.2 Tree Bitmap Algorithm

Eatherton and Dittia’sTree Bitmapalgorithm is a hardware-based approach that employs a com-

pressed multibit trie data structure to perform Longest Prefix Matching (LPM) at high rates with ef-

ficient use of memory [11]. Due to the use of CIDR, IP route lookups consist of finding the longest

matching prefix stored in the forwarding table for a given 32-bit IPv4 destination address and re-

trieving the associated forwarding information. As shown in Figure 3.1, the destination IP address

is compared to the stored prefixes starting with the most significant bit. Note that this is the same

example set of prefixes used in the survey of Longest Prefix Matching techniques in Section 2.2.

In this example, a packet is bound for a workstation at Washington University in SaintLouis. A

linear search through the table results in three matching prefixes: *, 10*, and 1000000011*. The

third prefix is the longest match, hence its associated forwarding information, denoted byNext Hop

7 in the example, is retrieved. Using this forwarding information, the packet is forwardedto the

specified next hop by modifying the packet header.

12

7

33

35

6

1000000011*

1000000000*

Next Hop

32−bit IP Address

7

1000 0000 1111 1100 ... 1010 0000
128.252.153.160

*
10*

110*

01*

1011*

0001*

01011*

00110*

Prefix Next Hop

10001*

100001*

1

7

9

3

68

21

51

Figure 3.1: IP lookup table of next hops. Next hops for IP packets are found using the longest
matching prefix in the table for the IP destination address of the packet.

To efficiently perform this lookup function in hardware, theTree Bitmapalgorithm starts

by storing prefixes in a binary trie as shown in Figure 3.2. Shaded nodes denote a stored prefix. A

search is conducted by using the IP address bits to traverse the trie, starting with the most significant

34

bit of the address. To speed up this searching process, multiple bits of the destination address are

compared simultaneously. In order to do this, subtrees of the binary trie are combined intosingle

nodes producing a multibit trie; this reduces the number of memory accesses needed to perform a

lookup. The depth of the subtrees combined to form a single multibit trie node is called thestride.

An example of a multibit trie using 4-bit strides is shown in Figure 3.3. In this case, 4-bit nibbles

of the destination address are used to traverse the multibit trie. AddressNibble(0) of the address,

10002 in the example, is used for the root node; AddressNibble(1) of the address, 00002 in the

example, is used for the next node; etc.

0

1

1

100

0 0

1

1

1 1 1

10

0 1

0

0

0

0

0

1

1

1

1

0

0

0

32−bit destination address: 128.252.153.160
1000 0000 1111 1100 ... 1010 0000

Figure 3.2: IP lookup table represented as a binary trie. Stored prefixes are denoted by shaded
nodes. Next hops are found by traversing the trie.

TheTree Bitmapalgorithm codes information associated with each node of the multibit trie

using bitmaps. TheInternal Prefix Bitmapidentifies the stored prefixes in the binary sub-tree of the

multi-bit node. TheExtending Paths Bitmapidentifies the “exit points” of the multibit node that

correspond to child nodes. Figure 3.4 shows how the root node of the example datastructure is

coded into bitmaps. The 4-bit stride example is shown as aTree Bitmapdata structure in Figure 3.5.

Note that a pointer to the head of the array of child nodes and a pointer to the set of next hop values

corresponding to the set of prefixes in the node are stored along with the bitmaps for each node.

By requiring that all child nodes of a single parent node be stored contiguously in memory, the

address of a child node can be calculated using a singleChild Node Array Pointerand an index

into that array computed from the extending paths bitmap. The same technique is usedto find the

associated next hop information for a stored prefix in the node. TheNext Hop Table Pointerpoints

to the beginning of the contiguous set of next hop values corresponding to the set of stored prefixes

35

P

PP

P

P

0 1

1

1

0

0

0 0

1

1

1 1 1

10

0 1

0

0

0

0

0

1

1

1

1

0

0

0

32−bit destination address: 128.252.153.160
1000 0000 1111 1100 ... 1010 0000

Figure 3.3: IP lookup table represented as a multibit trie. A stride, 4-bits, of the unicast destination
address of the IP packet are compared at once, speeding up the lookup process.

in the node. Next hop information for a specific prefix may be fetched by indexing fromthe pointer

location.

Internal Prefix Bitmap: 1 00 0110 00000010
Extending Paths Bitmap: 0101 0100 1001 0000

0000100100101010

0

0 0

1

1

1 1 1

10

0

0

0

1

1

10

Figure 3.4: Bitmap coding of a multibit trie node. The internal bitmap represents the storedprefixes
in the node while the extending paths bitmap represents the child nodes of the current node.

The index for theChild Node Array Pointerleverages a convenient property of the data

structure. Note that the numeric value of the nibble of the IP address is also the bit positionof the

extending path in theExtending Paths Bitmap. For example, AddressNibble(0) = 10002 = 8. Note

that the eighth bit position, counting from the most significant bit, of theExtending Paths Bitmap

shown in Figure 3.4 is the extending path bit corresponding to AddressNibble(0) = 10002. The

index of the child node is computed by counting the number of ones in theExtending Paths Bitmap

to the left of this bit position. In the example, the index would be three. This operation of computing

36

Child Node Array Ptr.

Next Hop Table Ptr.

Child Node Array Ptr.Child Node Array Ptr.Child Node Array Ptr.

Next Hop Table Ptr.Next Hop Table Ptr.

P

Child Node Array Ptr.

Next Hop Table Ptr.

Child Node Array Ptr.

Next Hop Table Ptr.

Next Hop Table Ptr.

Child Node Array Ptr.

P P P P

Next Hop Table Ptr.

0000 0000 0000 0000

1 00 0000 0000 0000

0000 0000 0000 0000

0 10 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0 01 0000 0000 0000

1 00 0110 0000 0010

0101 0100 1001 0000

1 00 0000 0000 0000

1000 0000 0000 0000

0 01 0100 0000 0000

0000 0000 0000 0000

0 00 1001 0000 0000

Figure 3.5: IP lookup table represented as a Tree Bitmap. Child nodes are stored contiguously so
that a single pointer and an index may be used to locate any child node in the the data structure.

the number of ones to the left of a bit position in a bitmap will be referred to asCountOnesand will

be used in later discussions.

When there are no valid extending paths, theExtending Paths Bitmapis all zeros, the termi-

nal node has been reached and theInternal Prefix Bitmapof the node is fetched. A logic operation

called Tree Searchreturns the bit position of the longest matching prefix in theInternal Prefix

Bitmap. CountOnesis then used to compute an index for theNext Hop Table Pointer, and the next

hop information is fetched. If there are no matching prefixes in theInternal Prefix Bitmapof the

terminal node, then theInternal Prefix Bitmapof the most recently visited node that contains a

matching prefix is fetched. This node is identified using a data structure optimization called the

Prefix Bit.

ThePrefix Bitof a node is set if its parent has any stored prefixes along the path to itself.

When searching the data structure, the address of the last node visited is remembered. Ifthe current

node’sPrefix Bit is set, then the address of the last node visited is stored as the best matching node.

Setting of thePrefix Bit in the example data structure of Figure 3.3 and Figure 3.5 is denoted by a

“P”.

3.2.1 Split-Trie Optimization

Let s be the stride of theTree Bitmapdata structure and let0 ≤ i ≤ 32
s be an integer. In the

basic configuration described above (which we will refer to as the “single-trie” configuration) the

Tree Bitmapdata structure stores prefixes of lengthi × s in nodes at depthi + 1. For example,

37

0 1

5−8

1−4

Prefix
Lengths

Figure 3.6: Split-trie optimization of theTree Bitmapdata structure.

a 24-bit prefix would be stored at level 7 in a data structure with a stride of 4. Examination of

publicly available route table statistics show that a large percentage of the prefixes in thetable

are, in fact, multiples of four. For example, in the Mae-West database used in Section3.5 for

performance testing “multiple of four” prefixes comprise over 66% of the total prefix lengths. Often

these prefixes are leaf nodes in the data structure, represented as a multibit node with a single prefix

stored at the root in the “single-trie” configuration. Such nodes carry very little information and

make poor use of the memory they consume.

The “split-trie” optimization seeks to speed up lookup performance and reduce memory

usage for typical databases by shifting “multiple of four” prefixes up one level in the data structure.

This can easily be achieved by splitting the multibit trie into two multibit-tries with a root node

having a stride of 1 as shown in Figure 3.6. Implementation of this optimization requires two

pointers, one to each new multibit root node, and a next hop value for the root node (default route).

Searches begin by using the most significant bit of the destination address to decide fromwhich

multibit root node to perform the search. For most lookups on typical databases, thisoptimization

saves one memory access per lookup and reduces the memory space per prefixrequired for theTree

Bitmapdata structure. The lookup performance and memory utilization of both the “single-trie”

and “split-trie” configurations of the FIPL architecture are evaluated in Section 3.5.

3.3 Hardware Design and Implementation

Modular design techniques are employed throughout the FIPL hardware design to provide scala-

bility for various system configurations. Figure 3.7 details the components required to implement

FIPL in the Port Processor (PP) of a router. Other components of the router include the Transmis-

sion Interfaces (TI), Switch Fabric, and Control Processor (CP). Providing the foundation of the

FIPL design, the FIPL engine implements a single instance of aTree Bitmapsearch. The FIPL En-

gine Controller may be configured to instantiate multiple FIPL engines in order to scale the lookup

throughput with system demands. The FIPL Wrapper extracts the IP addresses from incoming

packets and writes them to an address FIFO read by the FIPL Engine Controller. Lookup results

are written to a FIFO read by the FIPL Wrapper which accordingly modifies the packet header.

The FIPL Wrapper also handles standard IP processing functions such as checksums andheader

38

Packet I/O

PP

Switch Fabric

Physical Links

CP

TI

PP

TI TI

FIPL Engine

FIPL Engine Controller

FIPL Engine

FIPL Wrapper

Processor
Control

SRAM Interface

Packet I/O

Figure 3.7: Block diagram of router with multi-engine FIPL configuration; detail of FIPL system
components in the Port Processor (PP).

field updates. Specifics of the FIPL Wrapper will vary depending upon the type of switching core

and transmission format. An on-chip Control Processor receives and processes memory update

commands on a dedicated control channel. Memory updates are the result of route add, delete, or

modify commands and are sent from the System Management and Control components. Note that

the off-chip memory is assumed to be a single port device; hence, an SRAM Interfacearbitrates

access between the FIPL Engine Controller and Control Processor.

3.3.1 FIPL Engine

Consisting of a few address registers, a simple Finite-State Machine (FSM), and combinational

logic, the FIPL Engine is a compact, efficientTree Bitmapsearch engine. Implementation of the

FIPL Engine requires only 450 lines of VHDL code. A dataflow diagram of the FIPL Engine

is shown in Figure 3.8. Data arriving from memory is latched into the DATAIN REG register

n clock cycles after issuing a memory read. The value ofn is determined by the read latency

of the memory device plus 2 clock cycles for latching the address out of and thedata into the

implementation device. The next address issued to memory is latched into the ADDROUT REGk

clock cycles after data arrives from memory. The value ofk is determined by the speed at which the

implementation device can compute thenexthop addr which is the critical path in the logic. Two

counters,memcountandsearchcount, are used to count the number of clock cycles for memory

access and address calculation, respectively. Use of multi-cycle paths allows the FIPLengine to

scale with implementation device and memory device speeds by simply changing compare values

in the finite-state machine logic.

In order to generatenexthop addr:

• TREE SEARCH generatesprefix indexwhich is the bit position of the best-matching prefix

stored in theInternal Prefixes Bitmap

39

next_hop_addr[17:0]

child_node_addr[17:0]

bestmatch_prefixes_addr[17:0]

fipl_addr_out[17:0]

addr_ff_out[17:0]
prev_node_prefixes_addr[17:0]

curr_node_prefixes_addr[17:0]

addr_out[17:0]

done_l

(state)

[15:0]

ip_addr_in[31:0]ip_addr_valid_l

ip_address[31:0]

stride[3:0]

ip_addr_nibble[3:0]

int_bmp[14:0]

[4:1] [0][17:5] [17:4] [3:0]

child_node_index[3:0]

TREE_SEARCH

prefix_index[3:0]

next_hop_index[3:0]
NEXT_HOP_PTR

[32:18]

nxt_hop[15:0]

[34] [33:18][17:0] [17:0]

bestmatch_stride[3:0]nx_stride[3:0]

IP_ADDRESS
MUX

p_bit child_node_ptr[17:0] ext_bmp[15:0] nxt_hop_table_ptr[17:0]

P_BIT

VALID_CHILD

NODE_COUNTONES

DATA_IN_REG

data_in[35:0]

fipl_data_in[35:0]

IP_ADDR_REG

STRIDE_REG

BESTMATCH_STRIDE_REG

+1 −1

ADDR_OUT_REGPREFIXES_ADDR_REGBESTMATCH_PREFIXES_ADDR_REG

+1

root_node_ptr_in[17:0]

CHILD_NODE_PTR
CARRY_MUX

+1

PREFIX_COUNTONES

CARRY_MUX

+1

ADDR_OUT_MUX

Figure 3.8: FIPL engine dataflow; multi-cycle path from input data flops to output addressflops
can be scaled according to target device speed; all multiplexor select lines andflip-flop enables
implicitly driven by finite-state machine outputs.

• PREFIX COUNTONES generatesnexthop indexwhich is the number of 1’s to the left of

prefix indexin theInternal Prefixes Bitmap

• nexthop indexis added to the lower four bits of theNext Hop Table Pointer

40

• The carryout of the previous addition is used to select the upper bits of theNext Hop Table

Pointeror the pre-computed value of the upper bits plus 1

The NODECOUNTONES and identical fast addition blocks generate thechild nodeaddr, but re-

quire less time as the TREESEARCH block is not in the path. The ADDROUT MUX selects

the next address issued to memory among the addresses for the next root node’sExtending Paths

BitmapandChild Node Array Pointer(root nodeptr), the next child node’sExtending Paths Bitmap

andChild Node Array Pointer(child nodeaddr), the current node’sInternal Prefix BitmapandNext

Hop Table Pointer(curr nodeprefixesaddr), the forwarding information for the best-matching pre-

fix (nexthop addr), and the best-matching previous node’sInternal Prefix BitmapandNext Hop

Table Pointer(bestmatchprefixesaddr). Selection is made based upon the current state.

VALID CHILD examines theExtending Paths Bitmapand determines if a child node exists

for the current node based on the current nibble of the IP address. The output of VALID CHILD,

prefix index, memcount, andsearchcountdetermine state transitions as shown in Figure 3.9. The

current state and the value of the PBIT determine the register enables for the

BESTMATCH PREFIXESADDR REG and the BESTMATCHSTRIDE REG which store the ad-

dress of theInternal Prefixes Bitmapand Next Hop Table Pointerof the node containing best-

matching prefixes and the associated stride of the IP address, respectively.

3.3.2 FIPL Engine Controller

Leveraging the uniform memory access period of the FIPL Engine, the FIPL Engine Controller

interleaves memory accesses of the necessary number of parallel FIPL Engines to scalelookup

throughput in order to meet system throughput demands. The scheme centers around a timing wheel

with a number of slots equal to the FIPL Engine memory access period. When an address is read

from the input FIFO, the next available FIPL Engine is started at the next available time slot. The

next available time slot is determined by indexing the current slot time by the known startup latency

of a FIPL Engine. For example, assume an access period of 8 clock cycles; hence, the timing wheel

has 8 slots numbered 0 through 7. Assume three FIPL Engines are currently performing lookups

occupying slots 1, 3, and 4. Furthermore, assume that from the time the IP address is issuedto the

FIPL Engine to the time the FIPL Engine issues its first memory read is 2 clock cycles; hence, the

startup latency is 2 slots. When a new IP address arrives, the next lookup may not be started at slot

times 7, 1, or 2 because the first memory read would be issued at slot time 1, 3, or 4, respectively

which would interfere with ongoing lookups. Assume the current slot time is 3; therefore, the next

FIPL engine is started and slot 5 is marked as occupied.

As previously mentioned, input IP addresses and output forwarding information are passed

between the FIPL Engine Controller and the FIPL Wrapper via FIFO interfaces. This design sim-

plifies the design of the FIPL Wrapper by placing the burden of in-order delivery of results on the

FIPL Engine Controller. While individual input and output FIFOs could be used for each engine

41

CHILD_SEARCH

WAIT_ROOT
else

else
IDLE

else

else

mem_count = n

WAIT_NEXT_HOP_INFO

prefix_index = 15 & search_count = k
prefix_index /= 15 & search_count = k

else
PREFIX_SEARCH

mem_count = n
LATCH_NEXT_NODE

else

mem_count = n

else

WAIT_PREFIXES
WAIT_NEXT_NODE

valid_child = 1 & search_count = k valid_child = 0 & search_count = k

ip_add_valid_l=0

mem_count = n

FETCH_BEST_PREV_NODE_PREFIXES

FETCH_NXT_HOP_INFO

LATCH_PREFIXES

FETCH_NEXT_NODE FETCH_CURR_NODE_PREFIXES

LATCH_ROOT

FETCH_ROOT

LATCH_NXT_HOP_INFO

Figure 3.9: FIPL engine state transition diagram.

to prevent head-of-the-line blocking, network designers will usually choose to configure the FIPL

Engine Controller assuming worst-case lookups. Also, the performance numbers reported ina sub-

sequent section show that average lookup latency per FIPL Engine increases by less than 3% for an

8-engine configuration; therefore, lookup engine “dead-time” is negligible.

3.3.3 Implementation Platform

FIPL is implemented on open-platform research systems designed and built at Washington Univer-

sity in Saint Louis [34]. The WUGS 20, an 8-port ATM switch providing 20 Gb/s of aggregate

throughput, provides a high-performance switching fabric [35]. This switching core is based upon

a multi-stage Benes topology, supports up to 2.4 Gb/s link rates, and scales up to 4096ports for

an aggregate throughput of 9.8 Tb/s [36]. Each port of the WUGS 20 can be fitted with a Field-

programmable Port eXtender (FPX), a port card of the same form factor as the WUGS transmission

42

interface cards [37]. Each FPX contains two FPGAs, one acting as the Network Interface Device

(NID) and the other as the Reprogrammable Application Device (RAD).

The RAD FPGA has access to two 1MB Zero Bus Turnaround (ZBT) SRAMs and two

64MB SDRAM modules providing a flexible platform for implementing high-performance net-

working applications [38]. To allow for packet reassembly and other processing functions requiring

memory resources, the FIPL has access to one of the 1MB ZBT SRAMs which require 18-bit ad-

dresses and provide a 36-bit data path with a 2-clock cycle latency. Since this memoryis “off-chip”

both the address and data lines must be latched at the pads of the FPGA, providing for a total latency

to memory of n = 4 clock cycles.

3.3.4 Memory Confi guration

Utilizing a 4-bit stride theExtending Paths Bitmapis 16-bits long, occupying less than a half-word

of memory. The remaining 20-bits of the word are used for thePrefix Bit andChild Node Array

Pointer; hence, only one memory access is required per node when searching for the terminal node.

Likewise, theInternal Prefix BitmapandNext Hop Table Pointermay be stored in a single 36-bit

word; hence, a single node of theTree Bitmaprequires two words of memory space. 131,072 nodes

may be stored in one of the 1MB SRAMs providing a maximum of 1,966,080 stored routes. Note

that the memory usage per route entry is dependent upon the distribution of prefixesin the data

structure. Memory usage for the experimental data structure is reported in the Section 3.5.

3.3.5 Worst-Case Performance

In this configuration, the pathological lookup requires 11 memory accesses: 8 memory accesses to

reach the terminal node, 1 memory access to search the sub-tree of the terminal node, 1 memory

access to search the sub-tree of the most recent node containing a match, and 1 memory access to

fetch the forwarding information associated with the best-matching prefix. Since the FPGAs and

SRAMs run on a synchronous 100MHz clock, all single cycle calculations must be completed in

less than 10ns. The critical path in the FIPL design, resolving thenexthop addr, requires more

than 20 ns when targeted to the RAD FPGA of the FPX, a Xilinx XCV1000E-7; hence,k is set

to 3. This provides a total memory access period of 80 ns and requires 8 FIPL enginesin order

to fully utilize the available memory bandwidth. Theoretical worst-case performance, all lookups

requiring 11 memory accesses, ranges from 1,136,363 lookups per second for asingle FIPL engine

to 9,090,909 lookups per second for eight FIPL engines in this implementation environment.

3.3.6 Hardware Resource Usage

As the WUGS 20 supports a maximum line speed of 2.4 Gb/s, a 4-engine configurationis used in

the Washington University system. Due to the ATM switching core, the FIPL Wrapper supports

AAL5 encapsulation of IP packets inside of ATM cells [39]. Relative to the Xilinx Virtex 1000E

43

FPGA used in the FPX, each FIPL Engine utilizes less than 1% of the available logic resources2.

Configured with 4 FIPL Engines, FIPL Engine Controller utilizes approximately 6% of the logic

resources while the FIPL Wrapper utilizes another 2% of the logic resources and 12.5%of the

on-chip memory resources. This results in an 8% total logic resource consumption by FIPL. The

SRAM Interface and Control Processor which parses control cells and executes memory commands

for route updates utilize another 8% of the available logic resources and 2% of the on-chip memory

resources. Therefore, all input IP forwarding functions occupy 16% of the logic resources leaving

the remaining 84% of the device available for other packet processing functionality.

3.4 System Management and Control Components

System management and control of FIPL in the Washington University system is performed by

several distributed components. All components were developed to facilitate furtherresearch using

the open-platform system. The software components described in this section were developed by

Todd Sproull, and their description is included here for completeness.

3.4.1 NCHARGE

NCHARGE is the software component that controls reprogrammable hardware on a switch [40].

Figure 3.10 shows the role of NCHARGE in conjunction with multiple FPX devices within a switch.

The software provides connectivity between each FPX and multiple remote software processes via

TCP sockets that listen on a well-defined port. Through this port, other software components are

able to communicate to the FPX using its specified API. Because each FPX is controlled by an inde-

pendent NCHARGE software process, distributed management of entire systems can be performed

by collecting data from multiple NCHARGE elements. [41].

3.4.2 FIPL Memory Manager

The FIPL Memory Manager is a stand alone C++ application that accepts commands to add, delete,

and update routing entries for a hardware-based Internet router. The program maintains the previ-

ously discussedTree Bitmapdata structure in a shared memory between hardware and software .

When a user enters route updates, the FIPL Memory Manager Software returns the corresponding

memory updates needed to perform that operation in the FPX hardware.

Command options:

[A]dd

[D]elete

[C]hange

2If targeted to the low-cost Xilinx Spartan-3 family of FPGAs (less than $12 USD for a one milliongate device), each
engine would cost approximately $0.12 USD.

44

S
R

A
M FPGA

FPGA
RAD

OC−3 Link

VCI 76 (NID), VCI 100 (RAD)

NID

S
D

R
A

M

FPX

RAD
FPGA

 0.0
NCHARGE

 7.1

FPX

S
D

R
A

M

NID
FPGA

NCHARGE

S
R

A
M

Washington University Gigabit Switch (WUGS)

TCP Sockets TCP Sockets

Software Controller

VCI 115 (NID), VCI 123 (RAD)

(up to 32 VCIs)

Figure 3.10: Control of the Field-programmable Port eXtender (FPX) via NCHARGE software.
Each FPX is controlled by an instance of NCHARGE which provides an API for FPX controlvia
remote software process.

[P]rint

[M]emoryDump

[Q]uit

Enter command (h for help): A

You entered add

Enter prefix x.x.x.x/s

(x = 0-255, s is significant bits 0-32) :

192.128.1.1/8

Enter Next Hop value: 4

Memory Update Commands:

w36 0 4 2 000000000 100000006

w36 0 2 2 200000004 000000000

w36 0 0 2 000200002 000000000

45

In the example shown here a single add route command requires three 36-bit memory write

commands, each consisting of 2 consecutive locations in memory at addresses 4,2, and 0, respec-

tively.

3.4.3 Sockets Interfaces

In order to access the FIPL Memory Manager as a daemon process, support software needs to be

in place to handle standard input and output. Socket software was developed to handle incoming

route updates to pass along to the FIPL Memory Manager. A socket interface was also developed to

send the resulting output of a memory update to the NCHARGE software. These software processes

handling input and output are called WriteFip and ReadFip, respectively. WriteFip is constantly

listening on a well known port for incoming route update commands. Once a connection is estab-

lished the update command is sent as an ASCII character string to WriteFip. This software prints

the string as standard output which is redirected to the standard input of FIPL Memory Manager.

The memory update commands needed by NCHARGE software to perform the route update are

issued at the output of FIPL Memory Manager. ReadFip receives these commands as standard

input and sends all of the memory updates associated with one route update overa TCP socket to

the NCHARGE software.

3.4.4 Remote User Interface

The current interface for performing route updates is via a web page that provides asimple interface

for user interaction. The user is able to submit single route updates or a batch job of multiple routes

in a file. Another option available to users is the ability to define unique control cells. This isdone

through the use of software modules that are loaded into the NCHARGE system.

In the current FIPL Module, a web page has been designed to provide a simple interface

for issuing FIPL control commands, such as changing theRoot Node Pointer. The web page also

provides access to a vast database of sample route table entries taken from the InternetPerformance

Measurement and Analysis project’s website [42]. This website provides daily snapshots of Internet

backbone routing tables including traditional Class A, B, and C addresses. Selecting the download

option from the FIPL web page executes a Perl script to fetch the router snapshots from the database.

The Perl script then parses the files and generates an output file that is readable by the Fast IP Lookup

Memory Manager.

3.4.5 Command Flow

The overall flow of data with FIPL and NCHARGE is shown in Figure 3.11. Suppose a user wishes

to add a route to the database. The user first submits either a single command or submits a file

containing multiple route updates. Data submitted from the web page, Figure 3.12, is passed

46

Manager
Memory
FIPL

FPXread_fipwrite_fiphttpd NCHARGE

FPX Control ProcessorRemote Host

Figure 3.11: Command flow for control of FIPL via a remote host.

FAST IP LOOKUP

Port Number: Stack Level:
� �

� Route Add
� �� �� �

IP Address: �
	�����
��������� Net Mask: �
� Next Hop:
���

� Route Delete
� �� ��

IP Address: Net Mask:

� Route Modify
� �� ��

IP Address: Net Mask: Next Hop:

� Submit Routes
� �� ��

Filename:

���������
��� �"!�#$#&%('*)

Figure 3.12: FPX Web Interface for FIPL route updates.

to the Web Server as a form. Local scripts process the form and generate an Add Route com-

mand that the software understands. These commands are ASCII strings in the form “Add route

A1.A2.A3.A4/netmask nexthop”. The script then sets up a TCP Socket and transmits each com-

mand to the WriteFip software process. As mentioned before Writefip listens on a TCP port and

relays messages to standard output in order to communicate with the FIPL Memory Manager. FIPL

Memory Manager takes the standard input and processes the route command in orderto generate

memory updates for an FPX board. Each memory update is then passed as standard output to the

ReadFip process.

After this process collects memory updates it establishes a TCP connection with NCHARGE

to transmit the commands. ReadFip is able to detect individual route commands and issues the set

of memory updates associated with each. This prevents ReadFip from creating a socket for every

memory update. From here memory updates are sent to NCHARGE software process to be packed

into control cells to send to the FPX. NCHARGE packs as many memory commands as it can

fit into a 53 byte ATM cell while preserving order between commands. NCHARGE sends these

control cells using a stop-and-wait protocol to ensure correctness, then issues a response message

to the user.

47

ip_addr_in

fipl_data_in

done_l

fipl_addr_out

ip_addr_valid

root_node_ptr

fipl_addr_out

FIPL Engine

da
ta

_i
n

done_l

fipl_data_in

ip_addr_in

ip_addr_valid

da
ta

_i
n

ad
dr

es
s

re
qu

es
t

gr
an

t
1

SRAM Interface

Processor
Control Cell

Wrapper

FIPL Engine

FIPL
Evaluation

Generator
IP Address

Timer FIFO
Latency

throughput_timer

root_node_ptr

engine_enables

full

write_data

write_time

empty

ip_address

read_addr

cells_out

cells_in8

re
qu

es
t

da
ta

_o
ut

ad
dr

es
s

rw

gr
an

t

FIPL Engine Controller

Figure 3.13: Block diagram of FIPL evaluation environment.

3.5 Performance Measurements

While the worst-case performance of FIPL is deterministic, an evaluation environment was devel-

oped in order to benchmark average FIPL performance on actual router databases.The evaluation

environment was used to extract lookup and update performance as the number of parallel FIPL

Engines was scaled up, as well as determine the performance gain of the split-trie optimization.

As shown in Figure 3.13, the evaluation environment includes a modified FIPL Engine Controller,

8 FIPL Engines, and a FIPL Evaluation Wrapper. The FIPL Evaluation Wrapper includes an IP

Address Generator which uses on-chip BlockRAMs in the Xilinx FPGA to implement storagefor

16,384 IPv4 destination addresses. The IP Address Generator interfaces to the FIPL Engine con-

troller like a FIFO. When a test run is initiated, an empty flag is driven to FALSE until all 16,384

addresses are read.

Control cells sent to the FIPL Evaluation Wrapper initiate test runs of 16,384 lookups and

specify how many FIPL Engines should be used during the test run. The FIPL Engine Controller

contains a latency timer for each FIPL Engine and a throughput timer that measures the number of

clock cycles required to complete each lookup and the test run of 16,384 addresses, respectively.

Latency timer values are written to a FIFO upon completion of each lookup. The FIPL Evaluation

Wrapper packs latency timer values into control cells which are sent back to the system control

48

Table 3.1: Memory usage for theTree Bitmapdata structure and next hop information using a
snapshot of the Mae-West database from March 15, 2002 consisting of 27,609 routes.

Type Total Total Next Hop Next Hop Tree Bitmap Tree Bitmap
(bytes) (bytes/prefix) (bytes) (bytes/prefix) (bytes) (bytes/prefix)

Single-Trie 409,937 14.8 124,241 4.5 285,696 10.3
Split-Trie 298,822 10.8 124,241 4.5 174,582 6.3

software where the contents are dumped to a file. The throughput timer value is included in the final

control cell.

A snapshot of the Mae-West database from March 15, 2002 consisting of 27,609 routes

was used for all tests. The on-chip memory read by the IP Address Generator was initialized with

16,384 IPv4 destination addresses created via random selections from the route table snapshot.

Two evaluation environments were synthesized, one including “single-trie” FIPL engines and one

including “split-trie” FIPL engines. Each evaluation environment was downloaded to theRAD

FPGA of the FPX and subjected to a series of test vectors.

3.5.1 Memory Utilization

Two Tree Bitmapdata structures were generated from the Mae-West snapshot, one for the “single-

trie” FIPL engines and one for the “split-trie” FIPL engines. As previously mentioned, our experi-

mental implementation allocated an entire 36-bit memory word for next hop information. As shown

in Table 3.1, the total memory utilization for each variation of the data-structure is broken down

into usage for theTree Bitmapand next hop information. Note that the size of theTree Bitmapdata

structure is reduced by approximately 30% via the split-trie optimization.

3.5.2 Lookup Rate

The “single-trie” and “split-trie” evaluation environments were downloaded to the RAD FPGAof

the FPX and subjected to a series of test vectors. Prior to each test run, theTree Bitmapdata structure

generated from the Mae-West database of 27,609 routes was loaded into the off-chipSRAM. The

on-chip memory read by the IP Address Generator was initialized with 16,384 IPv4 destination

addresses created via random selections from the route table snapshot. Test runs were initiated

using configurations of 1 through 8 engines.

Each evaluation environment was first tested with no intervening updates. Figure 3.14 plots

the number of lookups per second versus the number of parallel FIPL engines for the single-trie and

split-trie versions. The theoretical worst-case performance is also included for reference. With no

intervening update traffic, lookup throughput for the “single-trie” configuration ranged from 1.46

million lookups per second for a single FIPL engine to 10.09 million lookups per second for 8

FIPL engines; an 11% increase in performance over the theoretical worst-case. Under identical

49

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8
of FIPL engines

M
ill

io
ns

of
lo

ok
up

s
pe

r
se

co
nd

Mae-West Throughput (Split Tree)

Mae-West Throughput

Theoretical Worst-case Throughput

Figure 3.14: FIPL performance: measurements used a snapshot of the Mae-West database from
March 15, 2002 consisting of 27,609 routes. Input IPv4 destination addresses were created by
randomly selecting 16,384 prefixes from the Mae-West database.

conditions, lookup throughput for the “split-trie” configuration ranged from 1.58 million lookups

per second for a single FIPL engine to 11 million lookups per second for 8 FIPL engines; a9%

increase in performance over the “single-trie” configuration. Average lookup latencyfor “single-

trie” FIPL engines ranged from 656 ns for a single FIPL engine to 674 ns for 8 FIPL engines.

Average lookup latency for “split-trie” FIPL engines ranged from 603 ns for a single FIPL engine

to 619 ns for 8 FIPL engines.

In order to evaluate performance under update load, updates were transmitted to theevalua-

tion environment at various rates during test runs. Update traffic consisted of an alternating pattern

of a 24-bit prefix and a 24-bit prefix delete. For the the “single-trie” configuration, the 24-bit prefix

add required 25 memory write operations which were packed into 4 control cells. The 24-bit prefix

delete required 14 memory write operations which were packed into 3 control cells. For the the

“split-trie” configuration, the 24-bit prefix add required 21 memory write operations which were

packed into 4 control cells. The 24-bit prefix delete required 12 memory write operationswhich

were packed into 2 control cells. Test runs were executed for both configurations with updates

rates ranging from 1,000 updates per second to 1,000,000 updates per second. Note that the upper

end of the range, one update per microsecond, represents a highly unrealistic situation as update

frequencies rarely exceed 1,000 updates per second.

Results of test runs of the “single-trie” FIPL configuration with intervening update traffic

are shown in Figure 3.15. Results of test runs of the “split-trie” FIPL configuration with inter-

vening update traffic are shown in Figure 3.16. For both configurations, update frequencies up to

10,000 updates per second had no noticeable effect on lookup throughput performance. For an up-

date frequency of 100,000 updates per second, the “single-trie” configuration exhibited a maximum

50

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8
of FIPL engines

M
ill

io
ns

of
lo

ok
up

s
pe

r
se

co
nd

No updates

100,000 updates per second

1,000,000 updates per second

Figure 3.15: FIPL performance under update load: measurements used a snapshot of the Mae-West
database from March 15, 2002 consisting of 27,609 routes. Input IPv4 destination addresses were
created by randomly selecting 16,384 prefixes from the Mae-West database. Updatesconsisted of
alternating addition and deletion of a 24-bit prefix.

performance degradation of 6.5% while the “split-trie” throughput was reduced by 7.2%. For an

update frequency of 1,000,000 updates per second, the “single-trie” configuration exhibited a max-

imum performance degradation of 56% while the “split-trie” throughput was reduced by 58.9%.

FIPL not only demonstrates no noticeable performance degradation under normal update loads, but

it also remains robust under excessive update loads.

Based on the test results, a FIPL configuration employing four parallel search engines was

synthesized for the WUGS/FPX research platform in order to support 2 Gb/s links. Utilizing custom

traffic generators and bandwidth monitoring software, throughput for minimum length packets was

measured at 1.988 Gb/s. Note that the total system throughput is limited by the 32-bit WUGS/FPX

interface operating at 62.5 MHz. Additional tests injected route updates to measure update perfor-

mance while maintaining 2 Gb/s of offered lookup traffic. The FIPL configuration experienced only

12% performance degradation at update rates of 200,000 updates per second.

3.6 Towards Better Performance

Ongoing research efforts seek to leverage the components and insights gained from implementing

Fast IP Lookup (FIPL) on the open research platforms developed at Washington Universityin Saint

Louis [33, 43]. In this section we discuss two optimizations that can significantly improve the

performance of the FIPL engine. In Section 3.6.1 we discuss design and device optimizations to

reduce the critical path delay in the FIPL engine. In Section 3.6.2 we apply a commondata structure

optimization to reduce the worst case number of off-chip memory accesses.

51

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8
of FIPL engines

M
ill

io
ns

of
lo

ok
up

s
pe

rs
ec

on
d

No updates

100,000 updates per second

1,000,000 updates per second

Figure 3.16: FIPL Split-Trie performance under update load: measurements used a snapshot of
the Mae-West database from March 15, 2002 consisting of 27,609 routes. Input IPv4 destination
addresses were created by randomly selecting 16,384 prefixes from the Mae-West database. Updates
consisted of alternating addition and deletion of a 24-bit prefix.

3.6.1 Implementation Optimizations

Coupled with advances in FPGA device technology, implementation optimizations of critical paths

in the FIPL engine circuit hold promise of increasing the system clock frequency in order to take

full advantage of the memory bandwidth offered by modern SRAMs. Existing SRAMs are ca-

pable of operating at 200 MHz or faster; note that modern FPGAs are capable of running at this

frequency [44] and no throughput is gained via an ASIC implementation since off-chip SRAM ac-

cesses are the performance bottleneck. Doubling of the clock frequency of FIPL directly translates

to a factor of two increase in lookup performance to a guaranteed worst case throughput of over 18.2

million lookups per second. DDR SRAMs essentially double the size of the memory word accessed

per clock cycle; this provides the opportunity for further optimizations by allowing us to double the

amount of information stored in node. We can take advantage of this by extending the stride length

of nodes and/or performing path compression.

3.6.2 Root Node Extension & Caching

By caching the root node in on-chip memory and extending its stride length, the number of off-chip

memory accesses can be reduced. Extending the stride length of the root node increases the number

of bits required for the extending paths and internal prefix bitmaps. The increase in the number of

extending paths also requires a larger chunk of contiguous memory for storing thesecond level of

multibit nodes in the child node array. In general, the size of the bitmap required for a stride of

52

Next Hop Next Hop Next HopNext Hop

Destination Address [31:i]

Figure 3.17: Root node extension using an on-chip array and multiple sub-tries.

lengthn is 2n+1−1 bits. The maximum number of contiguous memory spaces needed for the child

node array is2n.

Selecting the stride length for the cached root node mainly depends upon the amount of

available on-chip memory and logic. In the case of ample on-chip memory, one would still want

to bound the stride length to prevent the amount of contiguous memory spaces necessary for the

child node array from becoming too large. Selection of a stride length which is a factorof four

plus one (i.e. 5, 9, 13, ...) provides the favorable property of implementing the “multiple-of-stride”

case efficiently. Selecting a root node stride length of eight requires extending pathsand internal

prefix bitmap lengths of 8192 and 8191 bits, respectively. Given that current generations of FPGAs

implement 16kb blocks of memory, the bitmap storage requirement does not seem prohibitively

high. However, theCountOnesandTree Searchfunctions consume exorbitant amounts of logic for

such large bitmaps.

Another approach is to simply represent the root node as an on-chip array indexedby the

first i bits of the destination address, wherei is determined by the stride length of the root node. This

technique was formally introduced by Lampson, Srinivasan, and Varghese [23] and is discussed in

Section 2.2.4. As shown in 3.17, each array entry stores the next hop information for the best-

matching prefix in then-bit path represented by the index, as well as a pointer to an extending path

sub-tree. Searches simply examine the extending path sub-tree pointer to see if a sub-tree exists for

the given address. This may be done by designating a null pointer value or using avalid extending

path bit. If no extending path sub-tree exists, the next hop information stored in the on-chiparray

entry is applied to the packet. If an extending path sub-tree exists, the extending path sub-tree

pointer is used to fetch the “root node” of the extending path sub-tree and the searchcontinues

in the normal Tree Bitmap fashion. If no matching prefix is found in the sub-tree, the next hop

information stored in the on-chip array entry is applied to the packet.

Obviously, the performance gain comes at the cost of on-chip resource usage andupdate

speed, as a single update may require updates to several array slots. Table 3.2 showsthe following:

• Array Size (AS): number of array slots.

53

Table 3.2: Memory usage for root node array optimization.

Stride (i) As On-CM (bits) WC Off-CMA WC Tp (10ns,5ns)
4 16 512 10 10, 20
5 32 1024 10 10, 20
8 256 8,192 9 11.1, 22.2
9 512 16,384 9 11.1, 22.2
12 4096 131,072 8 12.5, 25
13 8192 262,144 8 12.5, 25

• On-chip Memory (On-CM): the amount of on-chip memory needed in order to allocate the

root node array.

• Worst Case Off-chip Memory Accesses (WC Off-CMA): the amount of off-chip memory re-

quired to store sub-trees.

• Worst Case Throughput (WC Tp): millions of lookups per second assuming a 100MHz clock

(T=10ns) and 200MHz clock (T=5ns).

We assume that all sub-tree pointers and next hop information are 16-bits each. If morenext-hop

information is required, the on-chip memory may be scaled accordingly or the information may be

stored off-chip and the 16-bit field used as a pointer. Note that extending the root node stride to 9 still

allows the initial array to fit in a single 18kb BlockRAM in the current generation of FPGAs [44].

3.7 Related Work

One way to accelerate IP packet forwarding is to avoid performing IP lookups. Protocolssuch as IP-

Switching and MPLS/Tag-Switching attempt to avoid lookups in the network core by establishinga

path between ingress and egress routers [45, 46, 47, 48]. In all cases, the decision at core routers is

simplified to an indexed or exact match lookup on a table of ATM virtual circuit identifiers, “tags”,

or “labels” depending on the protocol in use. While these protocols have enjoyedlimited success,

two major issues prevent them from obviating longest prefix match lookups. First, the ingressand

egress routers are still required to perform a full IP lookup in order to make a routing decision.

Even if ingress and egress routers are restricted to network edges, increasing bandwidth demands

require high performance IP lookup techniques. The second major issue is coordinationbetween

multiple Autonomous Systems (AS). Due to issues like security, trust, resource allocations, and

differing views of the network, end-to-end coordination in the Internet is difficult. Terminating and

re-establishing connections at AS boundaries requires full routing decisions by eachAS router at

the boundary.

54

Numerous research and commercial IP lookup techniques exist. On the commercial front,

several companies have developed high speed lookup techniques using Ternary Content Address-

able Memory (TCAM) and Application Specific Integrated Circuit (ASIC) technologies. Some cur-

rent products, targeting OC-768 (40 Gb/s) and quad OC-192 (10 Gb/s) link configurations, claim

throughputs of over 100 million lookups per second and storage for 100 million entries [49]. How-

ever, the advertised performance comes at an extreme cost. 16 ASICs containing embedded TCAMs

must be cascaded in order to achieve the advertised throughput and support the more realistic stor-

age capacity of one million table entries. We provide a more detailed analysis of the size, power

consumption, and cost of TCAM devices in Section 4.2.2.

An overview of the most prominent Longest Prefix Matching algorithms is provided in

Section 2.2. TheLulea algorithm is the most similar of published algorithms to theTree Bitmap

algorithm used in our FIPL engine [21]. LikeTree Bitmap, theLuleaalgorithm uses a type of com-

pressed trie to limit the number of memory accesses required to traverse the data structure. While

similar at a high level, the two algorithms differ in a variety of specifics, that allowTree Bitmapto

offer comparable lookup performance with more efficient support of dynamic incremental updates.

Due to its relative simplicity,Tree Bitmapis also more amenable to hardware implementation. A

detailed comparison of theTree Bitmapalgorithm to other published lookup techniques is provided

in [11]; but, we highlight the most important distinctions here.

The design focus of theLulea algorithm is to provide high lookup rates using a software

implementation on a general purpose processor or network processor. In order to accomplish this,

the algorithm employs compression techniques that allow the forwarding table to fit in a processor’s

cache and limit computations to simple indexing operations. The lack of support for dynamic incre-

mental updates is a byproduct of the focus on extremely compact table size and limited number of

memory accesses. TheLuleaalgorithm begins by constructing a three level multibit trie with strides

of 16, 8, and 8. Searching each level of theLulea data structure may require up to four memory

accesses, hence the worst case number of memory accesses is 12. Recall that our implementation

of Tree Bitmapis an eight level multibit trie with a constant stride of 4 requiring at most 11 memory

accesses. Note that theTree Bitmapalgorithm does not preclude the use of variable strides, and as

we show in Section 3.6.2 the worst case number of memory accesses can be reduced via further

optimization.

The Lulea encoding requires that the trie becomplete, thus every node must have two or

no children. This requirement yields the following property: every prefix is stored in a leafand

every leaf stores a prefix. The algorithm then employs an implicit form ofleaf pushing[19] that

removes redundant entries from the set of stored values. In essence, the best matching prefix or

pointer to the next multibit node is pre-computed for each possible path through each multibit node.

For each multibit node, this information is encoded using arrays ofcode wordsandbase indices.

A precomputed table of indices is used to compute the pointer to the next hop information or next

multibit node along the search path.

55

In contrast, theTree Bitmapalgorithm avoids pre-computation by computing pointer indices

“on-the-fly” using theCountOnesoperation. It also avoids pre-computation in the form ofleaf push-

ing by explicitly representing the set of prefixes stored in each multibit node via bitmap encoding.

These design choices allowTree Bitmapto remain competitively memory efficient while support-

ing dynamic incremental updates. While the requirement that all child nodes of aparent node be

stored contiguously slightly complicates the memory management, updates to the forwarding table

typically require reads or writes to only a few memory words. In summary,Tree Bitmapoffers

equal or better lookup performance with comparable memory requirements. Our implementation

provides concrete evidence thatTree Bitmapis a viable option for high-performance systems and

can supporting dynamic incremental updates at rates far exceeding the current maximum update

rates observed in the Internet.

3.8 Discussion

IP address lookup is one of the primary functions of the router and often is a significantperformance

bottleneck. In response, we have presented the Fast Internet Protocol Lookup (FIPL) search engine

which utilizes Eatherton and Dittia’sTree Bitmapalgorithm. Striking a favorable balance between

lookup and update performance, memory efficiency, and hardware resource usage, each FIPL engine

supports over 500 Mb/s of link traffic while consuming less than 1% of available logic resources and

approximately 10 bytes of memory per entry. Utilizing only a fraction of a reconfigurable logic de-

vice and a single commodity SRAM, FIPL offers an attractive alternative to expensive commercial

solutions employing multiple Content Addressable Memory (CAM) devices and Application Spe-

cific Integrated Circuits (ASICs). By providing high-performance with low resource consumption,

FIPL is a prime candidate for a System-On-Chip (SoC) route lookup solution or an LPM engine in

a packet classification device.

56

Chapter 4

Multiple Field Search Techniques

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein

In this chapter we provide a survey and taxonomy of the major advances in multiple field search

techniques for packet classification. Due to the complexity of the search, packetclassification is

often a performance bottleneck in network infrastructure; therefore, it has received much attention

in the research community. In general, there have been two major threads of research addressing this

problem: algorithmic and architectural. A few pioneering groups of researchers posedthe problem,

provided complexity bounds, and offered a collection of algorithmic solutions [50, 51, 52, 53].

Subsequently, the design space has been vigorously explored by many offering new algorithms and

improvements upon existing algorithms [54, 27, 29]. Given the inability of early algorithms to meet

performance constraints imposed by high speed links, researchers in industry and academia devised

architectural solutions to the problem. This thread of research produced the most widely-used packet

classification device technology, Ternary Content Addressable Memory (TCAM) [55, 56,17, 57].

Some of the most promising algorithmic research embraces the practice of leveraging the

statistical structure of filter sets to improve average performance [50, 54, 58, 51, 59]. Several algo-

rithms in this class are amenable to high-performance hardware implementation. We discuss these

observations in more detail and provide motivation for packet classification on larger numbers of

fields in Chapter 5. New architectural research combines intelligent algorithms and novel architec-

tures to eliminate many of the unfavorable characteristics of current TCAMs [32]. We observe that

the community appears to be converging on a combined algorithmic and architectural approach to

the problem [32, 60, 28]. In order to lend structure to our discussion, we develop a taxonomy in

Section 4.1 that frames each technique according to its high-level approach to theproblem. The pre-

sentation of this taxonomy is followed by a survey of the seminal and recent solutionsto the packet

classification problem. Throughout our presentation we attempt to use a minimal set of running

examples to provide continuity to the presentation and highlight the distinctions amongthe various

solutions.

57

Linear Search

TCAM*

E-TCAMHiCuts*Modular
P. Class

Grid-of-Tries*
Tuple Space*

Rectangle
Search

Pruned
Tuple Space

P2C

FIS Trees

RFC*

DCFL

Crossproducting*

Parallel
BV*

Conflict-Free
Rectangle

Search

Exhaustive Search

Decision Tree Tuple Space

Decomposition

ABV

EGT HyperCuts

Figure 4.1: Taxonomy of multiple field search techniques for packet classification; adjacent tech-
niques are related; hybrid techniques overlap quadrant boundaries;∗ denotes a seminal technique.

4.1 Taxonomy

Given the subtle differences in formalizing the problem and the enormous need for good solutions,

numerous algorithms and architectures for packet classification have been proposed. Rather than

categorize techniques based on their performance, memory requirements, or scaling properties, we

present a taxonomy that breaks the design space into four regions based on the high-level approach

to the problem. We feel that such a taxonomy is useful, as a number of the salient features and

properties of a packet classification technique are consequences of the high-level approach. We

frame each technique as employing one or a blend of the following high-level approaches to finding

the best matching filter or filters for a given packet:

• Exhaustive Search: examine all entries in the filter set

• Decision Tree: construct a decision tree from the filters in the filter set and use the packet

fields to traverse the decision tree

• Decomposition: decompose the multiple field search into instances of single field searches,

perform independent searches on each packet field, then combine the results

• Tuple Space: partition the filter set according to the number of specified bits in the filters,

probe the partitions or a subset of the partitions using simple exact match searches

Figure 4.1 presents a visualization of our taxonomy. Several techniques, includinga few of the most

promising ones, employ more than one approach. This is reflected in Figure 4.1 by overlapping

quadrant boundaries. Relationships among techniques are reflected by proximity.

58

In the following sections, we discuss each high-level approach in more detail along with

the performance consequences of each. We also present a survey of the specific techniques using

each approach. We note that the choice of high-level approach largely dictates the optimal archi-

tecture for high-performance implementation and a number of the scaling properties. Commonly,

papers introducing new search techniques focus on clearly describing the algorithm,extracting scal-

ing properties, and presenting some form of simulation results to reinforce baseline performance

claims. Seldom is paper “real estate” devoted to flushing out the details of a high-performance im-

plementation; thus, our taxonomy provides valuable insight into the potential of these techniques.

In general, the choice of high-level approach does not preclude a techniquefrom taking advantage

of the statistical structure of the filter set; thus, we address this aspect of each technique individually.

4.2 Exhaustive Search

The most rudimentary solution to any searching problem is simply to search through all entries

in the set. For the purpose of our discussion, assume that the set may be divided into anumber

of subsets to be searched independently. The two most common embodiments of the exhaustive

search approach for packet classification are a linear search through a list of filters or a massively

parallel search over the set of filters. Interestingly, these two solutions represent the extremes of the

performance spectrum, where the lowest performance option, linear search, does not divide the set

into subsets and the highest performance option, Ternary Content Addressable Memory(TCAM),

completely divides the set such that each subset contains only one entry. We discuss both of these

solutions in more detail below. The intermediate option of exhaustively searching subsets containing

more than one entry is not a common solution, thus we do not discuss it directly. It is important to

note that a number of recent solutions using the decision tree approach use a linearsearch over a

bounded subset of filters as the final step. These solutions are discussed in Section 4.3.

Computational resource requirements for exhaustive search generally scale linearly with the

degree of parallelism. Likewise, the realized throughput of the solution is proportional tothe degree

of parallelism. Linear search requires the minimum amount of computation resources while TCAMs

require the maximum, thus linear search and TCAM provide the lowest and highest performance

exhaustive search techniques, respectively.

Given that each filter is explicitly stored once, exhaustive search techniques enjoy a favor-

able linear memory requirement,O(N), whereN is the number of filters in the filter set. Here

we seek to challenge a commonly held view that theO(N) storage requirement enjoyed by these

techniques is optimal. We address this issue by considering the redundancy among filter fields and

the number of fields in a filter. These are vital parameters when considering a third dimension of

scaling: filter size. By filter size we mean the number of bits required to specify a filter. A filter

using the standard IPv4 5-tuple requires about 168 bits to specify explicitly. With that number of

59

bits, we can specify2168 distinct filters. Typical filter sets contain fewer than220 filters, suggesting

that there is potential for a factor of eight savings in memory.

Here we illustrate a simple encoding scheme that represents filters in a filter set more ef-

ficiently than explicitly storing them. Let a filter be defined by fieldsf1 . . . fd where each fieldfi

requiresbi bits to specify. For example, a filter may be defined by a source address prefix requiring

64 bits1, a destination address prefix requiring 64 bits, a protocol number requiring 8 bits, etc. By

this definition, the memory requirement for the exhaustive search approach is

N
d
∑

i=1

bi (4.1)

Now letu1 . . . ud be the number of unique field values in the filter set for each filter fieldi. If each

filter in the filter set contained a unique value in each field, then exhaustive search would have an

optimal storage requirement. Note that in order for a filter to be unique, it only must differ from

each filter in the filter set by one bit. As we discuss in Chapter 5, there is significant redundancy

among filter fields. Through efficient encoding, the storage requirement can be reduced from linear

in the number of filters to logarithmic in the number of unique fields. Consider the example shown

in Figure 4.2. Note that all 8 filters are unique, however there are only two unique values for each

field for all filters in the filter set. In order to represent the filter set, we only need to store the

unique values for each field once. As shown in Figure 4.2, we assign a locally unique label to each

unique field value. The number of bits required for each label islg(ui), only one bit in our example.

Note that each filter in the filter set can now be represented using the labels for its constituent fields.

Using this encoding technique, the memory requirement becomes

d
∑

i=1

(ui × bi) + N
d
∑

i=1

lg ui (4.2)

The first term accounts for the storage of unique fields and the second term accounts forthe storage

of the encoded filters. The savings factor for a given filter set is simply the ratio of Equation 4.1 and

Equation 4.2. For simplicity, letbi = b∀i and letui = u∀i ; the savings factor is:

Nb

ub + N lg u
(4.3)

In order for the savings factor to be greater than one, the following relationship must hold:

u

N
+

lg u

b
< 1 (4.4)

1We are assuming a 32-bit address where an additional 32 bits are used to specify a mask.There are more effi cient
ways to represent a prefi x, but this is tangential to our argument.

60

11* 001* TCP

SA DA Prot

11* 001* UDP

11* 101* TCP

11* 101* UDP

111* 001* TCP

111* 001* UDP

111* 101* TCP

111* 101* UDP

SA

11*

111*

a

b

DA

001*

101*

Prot

TCP

UDP

filters

(a,a,a)

(a,a,b)

(a,b,a)

(a,b,b)

(b,a,a)

(b,a,b)

(b,b,a)

(b,b,b)

a

b

a

b

Figure 4.2: Example of encoding filters by unique field values to reduce storage requirements.

Note thatu ≤ 2b andu ≤ N . Thus, the savings factor increases as the number of filters in the filter

set and the size (number of bits) of filter fields increases relative to the number of unique filter fields.

For our simple example in Figure 4.2, this encoding technique reduces the storagerequirement from

1088 bits to 296 bits, or a factor of 3.7. As discussed in Section 5.8, we anticipate that future filter

sets will include filters with more fields. It is also likely that the additional fields will contain a

handful of unique values. As this occurs, the linear memory requirement of techniques explicitly

storing the filter set will become increasingly sub-optimal.

4.2.1 Linear Search

Performing a linear search through a list of filters hasO(N) storage requirements, but it also re-

quiresO(N) memory accesses per lookup. For even modest sized filter sets, linear search becomes

prohibitively slow. It is possible to reduce the number of memory accesses per lookup by a small

constant factor by partitioning the list into sub-lists and pipelining the search where each stage

searches a sub-list. Ifp is the number of pipeline stages, then the number of memory accesses per

lookup is reduced toO(N
p) but the computational resource requirement increases by a factor ofp.

While one could argue that a hardware device with many small embedded memory blocks could

provide reasonable performance and capacity, latency increasingly becomes anissue with deeper

pipelines and higher link rates. Linear search is a popular solution for the final stage ofa lookup

when the set of possible matching filters has been reduced to a bounded constant [51, 29, 59].

4.2.2 Ternary Content Addressable Memory (TCAM)

Taking a cue from fully-associative cache memories, Ternary Content Addressable Memory (TCAM)

devices perform a parallel search over all filters in the filter set [57]. TCAMs were developed with

the ability to store a “Don’t Care” state in addition to a binary digit. Input keys are compared against

every TCAM entry, thereby enabling them to retain single clock cycle lookups for arbitrary bit mask

61
key key

a1 a2

match
logic

write enable

match line

a2
0
1
0
1

a1
0
0
1
1

value
Don’t Care

1
0

undefined

Figure 4.3: Circuit diagram of a standard TCAM cell; the stored value (0, 1, Don’t Care) is encoded
using two registersa1anda2.

matches. TCAMs do suffer from four primary deficiencies:(1) high cost per bit relative to other

memory technologies,(2) storage inefficiency,(3) high power consumption,(4) limited scalability

to long input keys. With respect to cost, a current price check revealed that TCAM costs about 30

times more per bit of storage than DDR SRAM. While it is likely that TCAM prices will fall in the

future, it is unlikely that they will be able to leverage the economy of scale enjoyedby SRAM and

DRAM technology.

The storage inefficiency comes from two sources. First, arbitrary ranges must be converted

into prefixes. In the worst case, a range coveringw-bit port numbers may require2(w−1) prefixes.

Note that a single filter including two port ranges could require2(w − 1)2 entries, or 900 entries

for 16-bit port numbers. As discussed in Section 5.3.3, we performed an analysis of 12 real filter

sets and found that theExpansion Factor, or ratio of the number of required TCAM entries to the

number of filters, ranged from 1.0 to 6.2 with an average of 2.32. This suggests thatdesigners should

budget at least seven TCAM entries per filter, compounding the hardware and power inefficiencies

described below. The second source of storage inefficiency stems from the additional hardware

required to implement the third “Don’t Care” state. In addition to the six transistors required for

binary digit storage, a typical TCAM cell requires an additional six transistors to store the maskbit

and four transistors for the match logic, resulting in a total of 16 transistors and a cell 2.7 times larger

than a standard SRAM cell [57]. A circuit diagram of a standard TCAM cell is shown in Figure4.3.

Some proprietary architectures allow TCAM cells to require as few as 14 transistors [55] [56].

The massive parallelism inherent in TCAM architecture is the source of high power con-

sumption. Each “bit” of TCAM match logic must drive a match word line which signals a match

for the given key. The extra logic and capacitive loading result in access times approximately three

times longer than SRAM [61]. Additionally, power consumption per bit of storage is on the order of

3 micro-Watts per “bit” [62] compared to 20 to 30 nano-Watts per bit for SRAM [63]. In summary,

TCAMs consume 150 times more power per bit than SRAM.

62

Spitznagel, Taylor, and Turner recently introducedExtended TCAM(E-TCAM) which im-

plements range matching directly in hardware and reduces power consumption byover 90% relative

to standard TCAM [32]. We discuss E-TCAM in more detail in Section 4.3.6. While this represents

promising new work in the architectural thread of research, it does not address the high cost per

bit or scalability issues inherent in TCAMs for longer search keys. TCAM suffers from limited

scalability to longer search keys due to its use of the exhaustive search approach. As previously

discussed, the explicit storage of each filter becomes more inefficient as filter sizes increase and the

number of unique field values remains limited. If the additional filter fields require range matches,

this effect is compounded due to the previously described inefficiency of mapping arbitrary ranges

to prefixes.

4.3 Decision Tree

Another popular approach to packet classification on multiple fields is to construct a decision tree

where the leaves of the tree contain filters or subsets of filters. In order to perform a search using

a decision tree, we construct a search key from the packet header fields. We traverse the decision

tree by using individual bits or subsets of bits from the search key to make branching decisions at

each node of the tree. The search continues until we reach a leaf node storing the best matching

filter or subset of filters. Decision tree construction is complicated by the fact that a filter may

specify several different types of searches. The mix of Longest Prefix Match, arbitrary range match,

and exact match filter fields significantly complicates the branching decisions at each node of the

decision tree. A common solution to this problem is to convert filter fields to a single type of match.

Several techniques convert all filter fields to bit vectors with arbitrary bit masks, i.e. bitvectors

where each bit may be a 1, 0, or∗ (“Don’t Care”). Recall that filters containing arbitrary ranges do

not readily map to arbitrary bit masks; therefore, this conversion process results in filter replication.

Likewise, the use of wildcards may cause a filter to be stored at many leaves of the decision tree.

To better illustrate these issues, we provide an example of a naı̈ve construction of a decision

tree in Figure 4.4. The five filters in the example set contain three fields: 3-bit address prefix,an

arbitrary range covering 3-bit port numbers, and an exact 2-bit value or wildcard.We first convert

the five filters into bit vectors with arbitrary bit masks which increases the number of filters toeight.

Viewing the construction process as progressing in a depth-first manner, a decision tree path is

expanded until the node covers only one filter or the bit vector is exhausted. Nodes at the last level

may cover more than one filter if filters overlap. We assume that leaf nodes contain the action to

be applied to packets matching the filter or subset of filters covered by the node. Due to the size of

the full decision tree, we show a portion of the data structure in Figure 4.4. If we evaluate this data

structure by its ability to distinguish between potentially matching filters for a given packet, we see

that this näıve construction is not highly effective. As the reader has most likely observed already,

there are numerous optimizations that could allow a decision tree to more effectively distinguish

63

a,b,c,d,
e,f,g,h

c,d,h

c,d,h

c,d,h

c,h
h

c,h
h

c,h
h

c

d,h

d,h

d,h

d,h

d,h

d,h

d,h

d

h

d

h

d

h

d

h

0

1

1

1

1

0
0

0

0

0

1

0

1

0

1

0

1

0

1

1

1

c,d,h

c,h
h

c,h
h

c,h
h

c

d,h

d,h

d,h

d,h

d,h

d,h

d,h

d

h

d

h

d

h

d

h

0

1

1

1

1

0
0

0

0

0

1

0

1

0

1

0

1

0

1

1

1

0

1

0

0

0
1

1
a,b,e,
f,g,h

0

1

0

10[0:7]*

10[0:2]11*

*[0:7]111

01[3:7]0*

01[0:2]10*

0101010*b

1001011*h

1001011*g

1000*11*f

*****111e

011**0**d

010110**c

0100*10*a

convert to
arbitrary mask

bit vector

Figure 4.4: Example of a naı̈ve construction of a decision tree for packet classification on three
fields; all filter fields are converted to bit vectors with arbitrary bit masks.

between potentially matching filters. The algorithms and architectures discussed in the following

subsections explore these optimizations.

64

Several of the algorithms that we classify as using a decision tree approach are more com-

monly referred to as “cutting” algorithms. These algorithms view filters withd fields as defining

d-dimensional rectangles ind-dimensional space; thus, a “cut” in multi-dimensional space is iso-

morphic to a branch in a decision tree. The branching decision in a cutting algorithm is typically

more complex than examining a single bit in a bit vector. Note that the E-TCAM approach discussed

in Section 4.3.6 employs a variant on the cutting algorithms that may be viewed asa parallel search

of several decision trees containing different parts of the filter set. Thus, we view some cutting

algorithms as relaxing the constraints on classical decision trees.

Due to the many degrees of freedom in decision tree approaches, the performance charac-

teristics and resource requirements vary significantly among algorithms. In general, lookuptime is

O(W), whereW is the number of bits used to specify the filter. Given that filters classifying on

the standard 5-tuple require a minimum of 104 bits, viable approaches must employ some optimiza-

tions in order to meet throughput constraints. The memory requirement for our naı̈ve construction

is O(2W+1). In general, memory requirements vary widely depending upon the complexity ofthe

branching decisions employed by the data structure. One common feature of algorithms employing

the decision tree approach is memory access dependency. Stated another way,the decision tree

searches are inherently serial; a matching filter is found by traversing the tree from root to leaf.The

serial nature of the decision tree approach precludes fully parallel implementations. If an algorithm

places a bound on the depth of the decision tree, then implementing the algorithm in apipelined

architecture can yield high throughput. This does require an independent memoryinterfaces for

each pipeline stage.

4.3.1 Grid-of-Tries

Srinivasan, Varghese, Suri, and Waldvogel introduced the seminalGrid-of-TriesandCrossproduct-

ing algorithms for packet classification [53]. In this section we focus onGrid-of-Trieswhich applies

a decision tree approach to the problem of packet classification on source and destination address

prefixes.Crossproductingwas one of the first techniques to employ decomposition and we discuss

it in Section 4.4.3. For filters defined by source and destination prefixes,Grid-of-Tries improves

upon the directed acyclic graph (DAG) technique introduced by Decasper, Dittia,Parulkar, and

Plattner [64]. This technique is also called set pruning trees because redundant subtrees can be

“pruned” from the tree by allowing multiple incoming edges at a node. While this optimization

does eliminate redundant subtrees, it does not completely eliminate replication as filters may be

stored at multiple nodes in the tree.Grid-of-Trieseliminates this replication by storing filters at a

single node and usingswitch pointersto direct searches to potentially matching filters.

Figure 4.5 highlights the differences between set pruning trees andGrid-of-Triesusing the

example filter set shown in Table 4.1. Note that we have restricted the classification to two fields,

destination address prefix followed by source address prefix. Assume we are searching for the best

matching filter for a packet with destination and source addresses equal to 0011. In theGrid-of-Tries

65

Table 4.1: Example filter set; port numbers are restricted to be an exact value or wildcard.

Filter DA SA DP SP PR
F1 0∗ 10∗ ∗ 80 TCP
F2 0∗ 01∗ ∗ 80 TCP
F3 0∗ 1∗ 17 17 UDP
F4 00∗ 1∗ ∗ ∗ ∗
F5 00∗ 11∗ ∗ ∗ TCP
F6 10∗ 1∗ 17 17 UDP
F7 ∗ 00∗ ∗ ∗ ∗
F8 0∗ 10∗ ∗ 100 TCP
F9 0∗ 1∗ 17 44 UDP
F10 0∗ 10∗ 80 ∗ TCP
F11 111∗ 000∗ ∗ 44 UDP

structure, we find the longest matching destination address prefix00∗ and follow the pointer to the

source address tree. Since there is no 0 branch at the root node, we follow theswitch pointerto the

0∗ node in the source address tree for destination address prefix0∗. Since there is no branch for00∗

in this tree, we follow theswitch pointerto the00∗ node in the source address tree for destination

address prefix∗. Here we find a stored filterF7 which is the best matching filter for the packet.

Grid-of-Triesbounds memory usage toO(NW) while achieving a search time ofO(W),

whereN is the number of filters andW is the maximum number of bits specified in the source or

destination fields. For the case of searching on IPv4 source and destination address prefixes, the

measured implementation used multi-bit tries sampling 8 bits at a time for the destination trie; each

of the source tries started with a 12 bit node, followed by 5 bit trie nodes. This yields a worstcase

of 9 memory accesses; the authors claim that this could be reduced to 8 with an increase in storage.

Memory requirements for 20k filters was around 2MB.

While Grid-of-Triesis an efficient technique for classifying on address prefix pairs, it does

not directly extend to searches with additional filter fields. Consider searching the filter setin Ta-

ble 4.1 using the following header fields: destination address 0000, source address 1101, destination

port 17, source port 17, protocol UDP. Using theGrid-of-Triesstructure in Figure 4.5, we find the

longest matching prefix for the destination address,00∗, followed by the longest matching prefix for

the source address,11∗. Filter F5 is stored at this node and there are noswitch pointersto continue

the search. Since the remaining three fields ofF5 match the packet header, we declareF5 is the best

matching filter. Note thatF3, F4, andF9 also match.F3 andF9 also have more specific matches

on the port number fields. Clearly,Grid-of-Triesdoes not directly extend to multiple field searches

beyond address prefix matching.

The authors do propose a technique using multiple instances of theGrid-of-Triesstructure

for packet classification on the standard 5-tuple. The general approach is to partition thefilter set

into classes based on the tuple defined by the port number fields and protocol fields. An example

66

0

F2

F3 F4

F7
F8

F9

F10
F11

F5F1

0 0

0

1

1

1

F2

F3

F7
F8

F9

F10

F1

0 0

0

1

1

F7

0

0

F6
0

0 1

F7

F7

0

0

0

0 0

0

1

1

1

Set Pruning Tree

F4

F11

F5

1

1

F2

F3

F8

F9

F10

F1

0

0

1

1

F7

0

0

F6

1

0

0

0 0

0

1

1

1

Grid-of-Tries
with switch pointers

Figure 4.5: Example of set pruning trees andGrid-of-Triesclassifying on the destination and source
address prefixes for the example filter set in Table 4.1.

is shown in Figure 4.6. Operating under the restriction that port numbers must either bean exact

67

17,14

TCP UDP
Other

, DP,* *,SP DP,SP

80,* *,80

*,100

F4

F5

1

1 F7

0

0

0
0

F10

1

0

0

F1

1

0

0

0

1

F2

F8

1

0

0

, DP,* *,SP DP,SP

*,44

17,17

F4

1

F7

0

0

0
0

1

F11

0

1

1

1

0

0

F3

1

0

0

1

F6

1

1

0

F9

F4

1

F7

0

0

0
0

*

Figure 4.6: Example of 5-tuple packet classification usingGrid-of-Tries, pre-filtering on protocol
and port number classes, for the example filter set in Table 4.1.

port number or wildcard2, we first partition the filter set into three classes according to protocol:

TCP, UDP, and “other”. Filters with a wildcard are replicated and placed into each class.We then

partition the filters in the “other” class into sub-classes by protocol specification. For each “other”

sub-class, we construct aGrid-of-Tries. The construction for the TCP and UDP classes are slightly

different due to the use of port numbers. For both the UDP and TCP classes, we partitionthe

constituent filters into four sub-classes according to the port number tuple: both ports specified;

destination port specified, source port wildcard; destination port wildcard, source port specified;

both ports wildcard. For each sub-class, we construct a hash table storing the unique combinations

of port number specifications. Each entry contains a pointer to aGrid-of-Triesconstructed from the

constituent filters. Ignoring the draconian restriction on port number specifications, this approach

may requireO(N) separate data-structures and filters with a wildcard protocol specification are

replicated across many of them. It is generally agreed that the great value of theGrid-of-Tries

technique lies in its ability to efficiently handle filters classifying on address prefixes.

4.3.2 Extended Grid-of-Tries (EGT)

Baboescu, Singh, and Varghese proposedExtended Grid-of-Tries(EGT) that supports multiple

fields searches without the need for many instances of the data structure [58]. EGT essentially

alters theswitch pointersto bejump pointersthat direct the search to all possible matching filters,

2Note that this restriction can be prohibitive for fi lter sets specifying arbitrary ranges. While fi lters could be replicated,
typical ranges cover thousands of port numbers which induces an unmanageable expansion in the size of the fi lter set.

68

0

* * * F4

* 44 TCPF11

* * TCP F5

1

1

* 80 TCPF2

0

0

1

1

* * * F7

0

0

17 17 UDPF6

1

0

0

0 0

0

1

1

1

* 100 TCPF8

80 * TCPF10

* 80 TCPF1

17 44 UDPF9

17 17 UDPF3

Figure 4.7: Example of 5-tuple packet classification usingExtended Grid-of-Tries(EGT) for the
example filter set in Table 4.1.

rather than the filters with the longest matching destination and source address prefixes. Asshown

in Figure 4.7, EGT begins by constructing a standardGrid-of-Triesusing the destination and source

address prefixes of all the filters in the filters set. Rather than storing matching filters at source

address prefix nodes, EGT stores a pointer to a list of filters that specify the destination and source

address prefixes, along with the remaining three fields of the filters. The authors observe thatthe

size of these lists is small for typicalcore routerfilter sets3, thus a linear search through the list of

filters is a viable option. Note that thejump pointersbetween source tries direct the search to all

possible matching filters. In the worst case, EGT requiresO(W 2) memory accesses whereW is

the address length. Simulated results with core router filter sets show that EGT requires 84 to 137

memory accesses per lookup for filter sets ranging in size from 85 to 2799 filters. Simulated results

with synthetically generated filter sets resulted in 121 to 213 memory accesses for filter sets ranging

in size from 5k to 10k filters. Memory requirements ranged from 33 bytes per filter to 57 bytes per

filter.
3This property does not necessarily hold for fi lter sets in other application environmentssuch as fi rewalls and edge

routers.

69

Table 4.2: Example filter set; address field is 4-bits and port ranges cover 4-bit port numbers.

Filter Address Port
a 1010 2 : 2
b 1100 5 : 5
c 0101 8 : 8
d ∗ 6 : 6
e 111∗ 0 : 15
f 001∗ 9 : 15
g 00∗ 0 : 4
h 0∗ 0 : 3
i 0110 0 : 15
j 1∗ 7 : 15
k 0∗ 11 : 11

4.3.3 Hierarchical Intelligent Cuttings (HiCuts)

Gupta and McKeown introduced a seminal technique calledHierarchical Intelligent Cuttings(Hi-

Cuts) [51]. The concept of “cutting” comes from viewing the packet classification problem geo-

metrically. Each filter in the filter set defines ad-dimensional rectangle ind-dimensional space,

whered is the number of fields in the filter. Selecting a decision criteria is analogous to choosing

a partitioning, or “cutting”, of the space. Consider the example filter set in Table 4.2 consisting of

filters with two fields: a 4-bit address prefix and a port range covering 4-bit port numbers. This filter

set is shown geometrically in Figure 4.8.

HiCuts preprocesses the filter set in order to build a decision tree with leaves containing

a small number of filters bounded by a threshold. Packet header fields are used totraverse the

decision tree until a leaf is reached. The filters stored in that leaf are then linearly searchedfor a

match.HiCutsconverts all filter fields to arbitrary ranges, avoiding filter replication. The algorithm

uses various heuristics to select decision criteria at each node that minimizes the depthof the tree

while controlling the amount of memory used.

A HiCutsdata structure for the example filter set in Table 4.2 is shown in Figure 4.9. Each

tree node covers a portion of thed-dimensional space and the root node covers the entire space.

In order to keep the decisions at each node simple, each node is cut into equalsized partitions

along a single dimension. For example, the root node in Figure 4.9 is cut into four partitions along

the Addressdimension. In this example, we have set the thresholds such that a leaf contains at

most two filters and a node may contain at most four children. A geometric representation of the

partitions created by the search tree are shown in Figure 4.10. The authors describe a number of

more sophisticated heuristics and optimizations for minimizing the depth of the tree and thememory

resource requirement.

Experimental results in the two-dimensional case show that a filter set of 20k filters re-

quires 1.3MB with a tree depth of 4 in the worst case and 2.3 on average. Experimentswith

70

13

0

1

2

3

4

5

6

7

8

9

10

12

11

13

14

15

0 1 2 3 4 5 6 7 8 9 10 1211 14 15

a

b

c

e

f

g

h

j

k

d

i

Address

P
o

rt

Figure 4.8: Geometric representation of the example filter set shown in Table 4.2.

four-dimensional classifiers used filter sets ranging in size from approximately 100 to 2000 fil-

ters. Memory consumption ranged from less than 10KB to 1MB, with associated worst case tree

depths of 12 (20 memory accesses). Due to the considerable preprocessing required, this scheme

does not readily support incremental updates. Measured update times ranged from 1ms to 70ms.

4.3.4 Modular Packet Classifi cation

Woo independently applied the same approach asHiCutsand introduced a flexible framework for

packet classification based on a multi-stage search over ternary strings representing the filters [29].

The framework contains three stages: an index jump table, search trees, and filter buckets. An

example data structure for the filter set in Table 4.2 is shown in Figure 4.11. A search begins by

using selected bits of the input packet fields to address the index jump table. If the entry contains

a valid pointer to a search tree, the search continues starting at the root of the search tree. Entries

without a search tree pointer store the action to apply to matching packets. Each search tree node

specifies the bits of the input packet fields to use in order to make a branching decision. When a

filter bucket is reached, the matching filter is selected from the set in the bucket via linear search,

71

[0:15] [0:15]
4-cuts

Address

[0:3] [0:15]
4-cuts
Port

[4:7] [0:15]
4-cuts
Port

[8:11] [0:15]
4-cuts
Port

[12:15] [0:15]
1-cut

Address

g
h

d
g

f
k

f h
i

d
i

i a d
j

j

[4:7] [8:11]
1-cut
Port

c
i

k
i

j [12:13] [0:15]
4-cuts
Port

[14:15] [0:15]
4-cuts
Port

j j e e
j

e
j

[12:13] [4:7]
1-cut
Port

[14:15] [4:7]
1-cut
Port

b d
j

e d
j

Figure 4.9: ExampleHiCutsdata structure for example filter set in Table 4.2.

binary search, or CAM. A key assumption is that every filter can be expressed as a ternary string

of 1’s, 0’s, and∗’s which represent “don’t care” bits. A filter containing prefix matches on each

field is easily expressed as a ternary string by concatenating the fields of the filter; however, a filter

containing arbitrary ranges may require replication. Recall that standard 5-tuple filters may contain

arbitrary ranges for each of the two 16-bit transport port numbers; hence, a single filtermay yield

900 filter strings in the worst case.

The first step in constructing the data structures is to convert the filters in the filter into

ternary strings and organize them in ann × m array where the number of rowsn is equal to the

number of ternary strings and the number of columnsm is equal to the number of bits in each string.

Each string has an associated weightWi which is proportional to its frequency of use relative to the

other strings; more frequently matching filter strings will have a larger weight. Next, the bits used

to address the index jump table are selected. For our example in Figure 4.11, we create a 3-bit

index concatenate from bits 7, 3, and 2 of the ternary search strings. Typically, the bitsused for

the jump table address are selected such that every filter specifies those bits. When filters contain

“don’t cares” in jump table address bits, it must be stored in all search trees associated withthe

addresses covered by the jump index. For each entry in the index jump table that isaddressed by at

least one filter, a search tree is constructed. In the general framework, the search trees may examine

72

13

0

1

2

3

4

5

6

7

8

9

10

12

11

13

14

15

0 1 2 3 4 5 6 7 8 9 10 1211 14 15

a

b

c

e

f

g

h

j

k

d

i

Address

P
o

rt

Figure 4.10: Geometric representation of partitioning created byHiCuts data structure shown in
Figure 4.9.

any number of bits at each node in order to make a branching decision. Selection of bits is made

based on a weighted average of the search path length where weights are derivedfrom the filter

weightsWi. This attempts to balance the search tree while placing more frequently accessed filter

buckets nearer to the root of the search tree. Note that our example in Figure 4.11does not reflect

this weighting scheme. Search tree construction is performed recursively until the number of filters

at each node falls below a threshold for filter bucket size, usually 128 filters or less. Weset the

threshold to two filters in our example. The construction algorithm is “greedy” in that it performs

local optimizations.

Simulation results with synthetically generated filter sets show that memory scales linearly

with the number of filters. For 512k filters and a filter bucket size of 16, the depth of the search

tree ranged from 11 levels to 35 levels and the number of filter buckets ranged from 76k to 350k

depending on the size of the index jump table. Note that larger index jump tablesdecrease tree

depth at the cost of increasing the number of filter buckets due to filter replication.

73

0*** 00**h

0110 ****i

1*** 0111j1

1*** 1***j2

0*** 1011k

00** 0100g2

00** 00**g1

001* 11**f3

001* 101*f2

001* 1001f1

111* ****e

**** 0110d

0101 1000c

1100 0101b

1010 0010a

B(7:0)Filter

000 001 010 011 100 101 110 111

B(7) & B(3) & B(2)

B(6)

g1
h

i

0 1
B(1)

g2
i

d
i

0 1

B(1)
0 1

B(6)

f1 c
i

0 1
B(6)

f2
k

k
i

0 1

B(1)
0 1

b
e

B(0)

d
e

e
j1

0 1

f3
i

a
e

e
j2

e
j2

Figure 4.11: Modular packet classification using ternary strings and a three-stage search architec-
ture.

4.3.5 HyperCuts

Introduced by Singh, Baboescu, Varghese, and Wang, theHyperCutsalgorithm [59] improves upon

the HiCuts algorithm developed by Gupta and McKeown [51] and also shares similarities with

theModular Packet Classificationalgorithms introduced by Woo [29]. In essence,HyperCutsis a

decision tree algorithm that attempts to minimize the depth of the tree by selectingmultiple “cuts”

in multi-dimensional space that partition the filter set into lists of bounded size. By forcing cuts

to create uniform regions,HyperCutsefficiently encodes pointers using indexing, which allows the

data structure to make multiple cuts in multiple dimensions without a significant memory penalty.

According to reported simulation results, traversing theHyperCutsdecision tree required

between 8 and 32 memory accesses for real filter sets ranging in size from 85 to 4740 filters,respec-

tively. Memory requirements for the decision tree ranged from 5.4 bytes per filter to 145.9 bytes per

filter. For synthetic filter sets ranging in size from 5000 to 20000 filters, traversing theHyperCuts

decision tree required between 8 and 35 memory accesses, while memory requirementsfor the deci-

sion tree ranged from 11.8 to 30.1 bytes per filter. The number of filters and encoding of filters in the

final lists are not provided; hence, it is difficult to assess the additional time and spacerequirements

74

for searching the lists at the leaves of the decision tree.HyperCuts’s support for incremental updates

are not specifically addressed. While it is conceivable that the data structure can easilysupport a

moderate rate of randomized updates, it appears that an adversarial worst-case streamof updates

can either create an arbitrarily deep decision tree or force a significant restructuring of the tree.

4.3.6 Extended TCAM (E-TCAM)

Spitznagel, Taylor, and Turner recently introducedExtended TCAM(E-TCAM) to address two of

the primary inefficiencies of Ternary Content-Addressable Memory (TCAM): power consumption

and storage inefficiency. Recall that in standard TCAM, a single filter including two port ranges re-

quires up to2(w−1)2 entries wherew is the number of bits required to specify a point in the range.

Thus, a single filter with two fields specifying ranges on 16-bit port numbers requires 900 entries in

the worst case. The authors found that storage efficiency of TCAMs for real filter sets ranges from

16% to 53%; thus, the average filter occupies between 1.8 and 6.2 TCAM entries. Byimplementing

range matching directly in hardware, E-TCAM avoids this storage inefficiency at the costof a small

increase in hardware resources. When implemented in standard CMOS technology, a range match-

ing circuit requires 44w transistors. This is considerably more than the 16w transistors required for

prefix matching; however, the total hardware resources saved by eliminating the expansion factor

for typical packet filter sets far outweighs the additional cost per bit for hardware range matching.

Storing a filter for the standard IPv4 5-tuple requires approximately 18% more transistors per entry.

This is a small increase relative to the 180% to 620% incurred by filter replication.

Given a query word, TCAMs compare the query word against every entry word in the de-

vice. This massively parallel operation results in high power consumption. E-TCAM reduces power

consumption by limiting the number of active regions of the device during a search. The second

architectural extension of E-TCAM is to partition the device into blocks that may be independently

activated during a query. Realistic implementations would partition the device into blocks capable

of storing hundreds of filters. In order to group filters into blocks, E-TCAM uses a multi-phase

partitioning algorithm similar to the previously discussed “cutting” algorithms. The key differences

in E-TCAM are that the depth of the “decision tree” used for the search is strictly limited by the

hardware architecture and a query may search several “branches” of the decision tree in parallel.

Figure 4.12 shows an example of an E-TCAM architecture and search using the examplefilter set

in Table 4.2.

In this simple example, filter blocks may store up to four filters and the “decision tree” depth

is limited to two levels. The first stage of the search queries theindex blockwhich contains one entry

for each group created by the partitioning algorithm. For each phase of the partitioning algorithm

except the last phase, a group is defined which completely contains at mostb filters whereb is the

block size. Filters “overlapping” the group boundaries are not included in the group. The final phase

of the algorithm includes such “overlapping” filters in the group. The number of phases determines

the number ofindexentries that may match a query, and hence the number of filter blocks that need

75

Index Block

****, [0:5]

****, [7:15]

****, [0:15]

1010, [2:2],a

1100, [5:5],b

00**, [0:4], g

0***, [0:3], h

0101, [8:8],c

001*, [9:15],f

1***, [7:15], j

0***, [11:11], k

111*, [0:15],e

****, [6:6], d

0110, [0:15],i

0110, 11
query

Figure 4.12: Example of searching the filter set in Table 4.2 using anExtended TCAM(E-TCAM)
using a two-stage search and a filter block size of four.

to be searched. A geometric representation of the groupings created for our example is shown in

Figure 4.13. Returning to our example in Figure 4.12, the matching entries in theindex blockactivate

the associated filter blocks for the next stage of the search. In this case, two filter blocksare active.

Note that all active filter blocks are searched in parallel; thus, with a pipelined implementation

E-TCAM can retain single-cycle lookups. Simulations show that E-TCAM requires less than five

percent of the power required by regular TCAM. Also note that multi-stageindex blockscan be used

to further reduce power consumption and provide finer partitioning of the filter set.

4.3.7 Fat Inverted Segment (FIS) Trees

Feldman and Muthukrishnan introduced another framework for packet classification using indepen-

dent field searches onFat Inverted Segment(FIS) Trees[27]. Like the previously discussed “cutting”

algorithms,FIS Treesutilize a geometric view of the filter set and map filters intod-dimensional

space. As shown in Figure 4.14, projections from the “edges” of thed-dimensional rectangles spec-

ified by the filters define elementary intervals on the axes; in this case, we form elementary intervals

on theAddressaxis. Note that we are using the example filter set shown in Table 4.2 where filters

contain two fields: a 4-bit address prefix and a range covering 4-bit port numbers.N filters will

define a maximum ofI = (2N + 1) elementary intervals on each axis. AnFIS Treeis a balanced

t-ary tree withl levels that stores a set of segments, or ranges. Note thatt = (2I + 1)1/l is the max-

imum number of children a node may have. The leaf nodes of the tree correspond to the elementary

76

13

0

1

2

3

4

5

6

7

8

9

10

12

11

13

14

15

0 1 2 3 4 5 6 7 8 9 10 1211 14 15

a

b

c

e

f

g

h

j

k

d

i

Address

P
o

rt

Figure 4.13: Example of partitioning the filter set in Table 4.2 for anExtended TCAM(E-TCAM)
with a two-stage search and a filter block size of four.

intervals on the axis. Each node in the tree stores a canonical set of ranges such thatthe union of

the canonical sets at the nodes visited on the path from the leaf node associated with the elementary

interval covering a pointp to the root node is the set of ranges containingp.

As shown in Figure 4.14, the framework starts by building anFIS Treeon one axis. For

each node with a non-empty canonical set of filters, we construct anFIS Treefor the elementary

intervals formed by the projections of the filters in the canonical set on the next axis (filter field) in

the search. Note that anFIS Treeis not necessary for the last packet field. In this case, we only

need to store the left-endpoints of the elementary intervals and the highest priority filter covering

the elementary interval. The authors propose a method to use aLongest Prefix Matchingtechnique

to locate the elementary interval covering a given point. This method requires at most2I prefixes.

Figure 4.14 also provides an example search for a packet with address 2, and portnumber

11. A search begins by locating the elementary interval covering the first packet field; interval[2 : 3]

on theAddressaxis in our example. The search proceeds by following the parent pointers in theFIS

Treefrom leaf to root node. Along the path, we follow pointers to the sets of elementary intervals

formed by thePort projections and search for the covering interval. Throughout the search, we

77

d, j

g

h,k

13

0

1

2

3

4

5

6

7

8

9

10

12

11

13

14

15

0 1 2 3 4 5 6 7 8 9 10 1211 14 15

a

b

c

e

f

g

h

j

k

d

i

f c i a b e

0 7 15

f

0 5 15

g

0 4 15

h

11

k

0 7 15

j

6

d

Address

P
or

t

Figure 4.14: Example ofFat Inverted Segment(FIS) Treesfor the filter set in Table 4.2.

remember the highest priority matching filter. Note that the basic framework requires a significant

amount of precomputation due to its use of elementary intervals. This property does not readily

support dynamic updates at high rates. The authors propose several data structure augmentations

to allow dynamic updates. We do not discuss these sophisticated augmentations but do point out

that they incur a performance penalty. The authors performed simulations with real and synthetic

78

filter sets containing filters classifying on source and destination address prefixes. For filter sets

ranging in size from 1k to 1M filters, memory requirements ranged from 100 to 60 bytes per filter.

Lookups required between 10 and 21 cache-line accesses which amounts to 80 to168 word accesses,

assuming 8 words per cache line.

4.4 Decomposition

Given the wealth of efficient single field search techniques, decomposing a multiple field search

problem into several instances of a single field search problem is a viable approach. Employing

this high-level approach has several advantages. First, each single field search engine operates

independently, thus we have the opportunity to leverage the parallelism offered by modern hardware.

Performing each search independently also offers more degrees of freedom in optimizing each type

of search on the packet fields. While these are compelling advantages, decomposing a multi-field

search problem raises subtle issues.

The primary challenge in taking this high-level approach lies in efficiently aggregatingthe

results of the single field searches. Many of the techniques discussed in this section use an encoding

of the filters to facilitate result aggregation. Due to the freedom in choosing single field searchtech-

niques and filter encodings, the resource requirements and achievable performance vary drastically

among the constituent techniques – even more so than with decision tree techniques.Limiting and

managing the number of intermediate results returned by single field search engines is also a crucial

design issue for decomposition techniques. Single field search engines often must return more than

one result because packets may match more than one filter. As was highlighted bythe previous

discussion of usingGrid-of-Triesfor filters with additional port and protocol fields, it is not suffi-

cient for single field search engines to simply return the longest matching prefix for a given filter

field. The best matching filter may contain a field which is not necessarily the longest matching

prefix relative to other filters; it may be more specific or higher priority in other fields. As a result,

techniques employing decomposition tend to leverage filter set characteristics that allow them to

limit the number of intermediate results. In general, solutions using decomposition tend to pro-

vide the high throughput due to their amenability to parallel hardware implementations. The high

level of lookup performance often comes at the cost of memory inefficiency and, hence, capacity

constraints.

4.4.1 Parallel Bit-Vectors (BV)

Lakshman and Stiliadis introduced one of the first multiple field packet classification algorithmstar-

geted to a hardware implementation. Their seminal technique is commonly referred to as the Lucent

bit-vector scheme orParallel Bit-Vectors(BV) [52]. The authors make the initial assumption that

the filters may be sorted according to priority. Like the previously discussed “cutting” algorithms,

Parallel BVutilizes a geometric view of the filter set and maps filters intod-dimensional space. As

79

13

0

1

2

3

4

5

6

7

8

9

10

12

11

13

14

15

0 1 2 3 4 5 6 7 8 9 10 1211 14 15

a

b

c

e

f

g

h

j

k

d

i000 0110 0110

000 0110 0111

000 0110 0110

Port Bit Vectors
abc defg hijk

001 0100 0110

000 0100 0110

000 1100 0100

010 0100 0100

000 0101 0100

000 0101 1100

100 0101 1100

000 0101 1100

A
dd

re
ss

B
it

V
ec

to
rs

ab
c

de
fg

hi
jk

00
0

10
01

10
01

00
0

10
11

10
01

00
0

10
00

10
01

00
1

10
00

10
01

00
0

10
00

11
01

00
0

10
00

10
01

00
0

10
00

00
10

10
0

10
00

00
10

00
0

10
00

00
10

01
0

10
00

00
10

00
0

10
00

00
10

00
0

11
00

00
10

Figure 4.15: Example of bit-vector construction for theParallel Bit-Vectorstechnique using the
filter set shown in Table 4.2.

shown in Figure 4.15, projections from the “edges” of thed-dimensional rectangles specified by the

filters define elementary intervals on the axes. Note that we are using the example filter setshown

in Table 4.2 where filters contain two fields: a 4-bit address prefix and a range covering 4-bit port

numbers.N filters will define a maximum of(2N + 1) elementary intervals on each axis.

For each elementary interval on each axis, we define anN -bit bit-vector. Each bit position

corresponds to a filter in the filter set, sorted by priority. All bit-vectors are initialized to all ‘0’s. For

each bit-vector, we set the bits corresponding to the filters that overlap the associated elementary

interval. Consider the interval[12 : 15] on thePort axis in Figure 4.15. Assume that sorting the

filters according to priority places them in alphabetical order. Filterse, f , i, andj overlap this

elementary interval; therefore, the bit-vector for that elementary interval is00001100110 where the

80

bits correspond to filtersa throughk in alphabetical order. For each dimensiond, we construct an

independent data structure that locates the elementary interval covering a givenpoint, then returns

the bit-vector associated with that interval. The authors utilize binary search, but any range location

algorithm is suitable.

Once we compute all the bit-vectors and construct thed data structures, searches are rela-

tively simple. We search thed data structures with the corresponding packet fields independently.

Once we have alld bit vectors from the field searches, we simply perform the bit-wiseAND of all

the vectors. The most significant ‘1’ bit in the result denotes the highest priority matching filter.

Multiple matches are easily supported by examining the most significant set of bits in the resulting

bit vector.

The authors implemented a five field version in an FPGA operating at 33MHz with five

128Kbyte SRAMs. This configuration supports 512 filters and performs one million lookups per

second. Assuming a binary search technique over the elementary intervals, the general Parallel

BV approach hasO(lg N) search time and a rather unfavorableO(N 2) memory requirement. The

authors propose an algorithm to reduce the memory requirement toO(N log N) using incremental

reads. The main idea behind this approach is to store a single bit vector for each dimension and a

set ofN pointers of sizelog N that record the bits that change between elementary intervals. This

technique increases the number of memory accesses byO(N log N). The authors also propose a

technique optimized for classification on source and destination address prefixes only, which we do

not discuss here.

4.4.2 Aggregated Bit-Vector (ABV)

Baboescu and Varghese introduced theAggregated Bit-Vector(ABV) algorithm which seeks to

improve the performance of theParallel BV technique by leveraging statistical observations of real

filter sets [54].ABVconverts all filter fields to prefixes, hence it incurs the same replication penalty

as TCAMs which we described in Section 4.2.2. Conceptually,ABV starts withd sets ofN -bit

vectors constructed in the same manner as inParallel BV. The authors leverage the widely known

property that the maximum number of filters matching a packet is inherently limited in real filter

sets. This property causes theN -bit vectors to be sparse. In order to reduce the number of memory

accesses,ABV essentially partitions theN -bit vectors intoA chunks and only retrieves chunks

containing ‘1’ bits. Each chunk isdN
A e bits in size. Each chunk has an associated bit in anA-bit

aggregate bit-vector. If any of the bits in the chunk are set to ‘1’, then the corresponding bit in the

aggregate bit-vector is set to ‘1’. Figure 4.16 provides an example using the filter set in Table 4.2.

Each independent search on thed packet fields returns anA-bit aggregate bit-vector. We

perform the bit-wiseAND on the aggregate bit-vectors. For each ‘1’ bit in the resulting bit-vector,

we retrieve thed chunks of the originalN -bit bit-vectors from memory and perform a bit-wiseAND.

Each ‘1’ bit in the resulting bit-vector denotes a matching filter for the packet.ABValso removes

the strict priority ordering of filters by storing each filter’s priority in an array. This allows us to

81

13

0

1

2

3

4

5

6

7

8

9

10

12

11

13

14

15

0 1 2 3 4 5 6 7 8 9 10 1211 14 15

a

b

c

e

f

g

h

j

k

d

i000 0110 0110

000 0110 0111

000 0110 0110

Port Bit Vectors
abc defg hijk

001 0100 0110

000 0100 0110

000 1100 0100

010 0100 0100

000 0101 0100

000 0101 1100

100 0101 1100

000 0101 1100

A
dd

re
ss

B
it

V
ec

to
rs

ab
c

de
fg

hi
jk

00
0

10
01

10
01

00
0

10
11

10
01

00
0

10
00

10
01

00
1

10
00

10
01

00
0

10
00

11
01

00
0

10
00

10
01

00
0

10
00

00
10

10
0

10
00

00
10

00
0

10
00

00
10

01
0

10
00

00
10

00
0

10
00

00
10

00
0

11
00

00
10

011

011

011

111

011

011

011

011

011

111

011

ABV

01
1

A
B

V

01
1

01
1

11
1

01
1

01
1

01
1

11
1

01
1

11
1

01
1

01
1

Figure 4.16: Example of bit-vector and aggregate bit-vector construction for theAggregated Bit-
Vectorstechnique using the filter set shown in Table 4.2.

reorder the filters in order to cluster ‘1’ bits in the bit-vectors. This in turn reduces the numberof

memory accesses. Simulations with real filter sets show thatABV reduced the number of memory

accesses relative toParallel BV by a factor of a four. Simulations with synthetic filter sets show

more dramatic reductions of a factor of 20 or more when the filter sets do not contain any wildcards.

As wildcards increase, the reductions become much more modest.

82

4.4.3 Crossproducting

In addition to the previously describedGrid-of-Tries algorithm, Srinivasan, Varghese, Suri, and

Waldvogel also introduced the seminalCrossproductingtechnique [53]. Motivated by the observa-

tion that the number of unique field specifications is significantly less than the number of filters in

the filter set,Crossproductingutilizes independent field searches then combines the results in a sin-

gle step. For example, a filter set containing 100 filters may contain only 22 unique source address

prefixes, 17 unique destination address prefixes, 11 unique source port ranges, etc.Crossproduct-

ing begins by constructingd sets of unique field specifications. For example, all of the destination

address prefixes from all the filters in the filter set comprise a set, all the source address prefixes

comprise a set, etc. Next, we construct independent data structures for each set that return a single

best matching entry for a given packet field. In order to resolve the best matching filter for the given

packet from the set of best matching entries for each field, we construct a table of crossproducts.

In essence, we precompute the best matching filter for every possible combination of results from

the d field searches. We locate the best matching filter for a given packet by using the concate-

nation of results from the independent lookups as a hash probe into the crossproducttable; thus,

5-tuple classification only requires five independent field searches and a single probe toa table of

crossproducts. We provide a simple example for a filter set with three fields in Figure 4.17. Note

that the full crossproduct table is not shown due to space constraints.

Given a parallel implementation,Crossproductingcan provide high throughput, however it

suffers from exponential memory requirements. For a set ofN filters containingd fields each, the

size of the crossproduct table can grow toO(N d). To keep a bound on the table size, the authors

proposeOn-demand Crossproductingwhich places a limit on the size of the crossproduct table and

treats it like a cache. If the field lookups produce a result without an entry in the crossproduct table

of limited size, then we compute the crossproduct from the filter set and store it in the table4. The

performance of this scheme largely depends upon locality of reference.

Finally the authors propose a combined scheme that seeks to leverage the strengths ofboth

Grid-of-TriesandCrossproducting. The scheme utilizesGrid-of-Tries to perform the destination

then source prefix matches andCrossproductingfor ports and flags. The search terminates as soon

as a matching filter is found. This assumes that the most specific filters are the highest priority

and that a non-overlapping filter set can be constructed. Using optimistic assumptions regarding

caching, the authors claim that a full filter match requires a worst case of 12 memory accesses.

4.4.4 Recursive Flow Classifi cation (RFC)

Leveraging many of the same observations, Gupta and McKeown introducedRecursive Flow Clas-

sification(RFC) which provides high lookup rates at the cost of memory inefficiency [50]. The au-

thors introduced a unique high-level view of the packet classification problem. Essentially, packet
4Cache entry replacement algorithms can be used to decide which entry to overwrite in the on-demand crossproduct

table.

83

k

j

i

h

g

f

e

d

c

b

a

Filter

UDP[0:15]*

[0:15]

TCP[1:1]001*

TCP[0:1]10*

UDP[5:15]000*

UDP[0:15]111*

UDP[5:15]001*

UDP[5:15]10*

UDP[1:1]1101

TCP[0:1]001*

TCP[0:1]000*

ProtocolPortAddress

fUDP[5:15]111*

k*[5:15]111*

*

…

TCP

…

*

UDP

TCP

*

UDP

TCP

Protocol

k

…

k

…

k

j

a

k

j

a

Best

Match

[0:1]000*

[0:1]000*

……

[0:15]*

[5:15]111*

……

[1:1]000*

[1:1]000*

[1:1]000*

[0:1]000*

PortAddress

*

111*

10*

1101

001*

000*

Address

[0:15]

[5:15]

[1:1]

[0:1]

Port

UDP

*

TCP

Protocol

Filter Set Field Sets

Table of Crossproducts

Figure 4.17: Example ofCrossproductingtechnique for filter set with three fields; full crossproduct
table is not shown due to space constraints.

classification can be viewed as thereductionof anm-bit string defined by the packet fields to ak-bit

string specifying the set of matching filters for the packet or action to apply to the packet. For clas-

sification on the IPv4 5-tuple,m is 104 bits andk is typically on the order of 10 bits. The authors

also performed a rather comprehensive and widely cited study of real filter sets and extracted several

useful properties. Specifically, they noted that filter overlap and the associated numberof distinct

84

regions created in multi-dimensional space is much smaller than the worst case ofO(nd). For a

filter set with 1734 filters the number of distinct overlapping regions in four-dimensionalspace was

found to be 4316, as compared to the worst case which is approximately1013.

Similar to theCrossproductingtechnique,RFCperforms independent, parallel searches on

“chunks” of the packet header, where “chunks” may or may not correspond to packet header fields.

The results of the “chunk” searches are combined in multiple phases, rather than a single step as in

Crossproducting. The result of each “chunk” lookup and aggregation step inRFC is an equivalence

class identifier,eqID, that represents the set of potentially matching filters for the packet. The

number ofeqIDsin RFCdepends upon the number of distinct sets of filters that can be matched by

a packet. The number ofeqIDsin an aggregation step scales with the number of unique overlapping

regions formed by filter projections. An example of assigningeqIDs is shown in Figure 4.18. In

this example, the rectanglesa, . . . , k are defined by the two fields of the filters in our running

example filter set in Table 4.2. In general, these could be rectangles defined by theprojections

of two “chunks” of the filters in the filter set. Note that the fields create nine equivalence classes

in theport field and eight equivalence classes in theaddressfield requiring 4-bit and 3-biteqIDs,

respectively.

RFC lookups in “chunk” and aggregation tables utilize indexing; the address for the table

lookup is formed by concatenating theeqIDsfrom the previous stages. The resultingeqID is smaller

(fewer number of bits) than the address; thus,RFCperforms a multi-stagereductionto a finaleqID

that specifies the action to apply to the packet. The use of indexing simplifies the lookupprocess at

each stage and allowsRFC to provide high throughput. This simplicity and performance comes at

the cost of memory inefficiency. Memory usage for less than 1000 filters ranged from a few hundred

kilobytes to over one gigabyte of memory depending on the number of stages.The authors discuss

a hardware architecture using two 64MB SDRAMs and two 4Mb SRAMs that could perform 30

million lookups per second when operating at 125MHz. The index tables used for aggregation also

require significant precomputation in order to assign the propereqID for the combination of the

eqIDs of the previous phases. Such extensive precomputation precludes dynamic updates at high

rates.

4.4.5 Parallel Packet Classifi cation (P2
C)

TheParallel Packet Classification(P 2C) scheme introduced by van Lunteren and Engbersen also

falls into the class of techniques using decomposition [28]. The key novelties ofP 2C are its encod-

ing and aggregation of intermediate results. Similar to theParallel Bit-VectorandRFC techniques,

P 2C performs parallel searches in order to identify the elementary interval covering each packet

field. The authors introduce three techniques for encoding the elementary intervals formed by the

projections of filter fields. These techniques explore the design tradeoffs between update speed,

space efficiency, and lookup complexity. For each field of each filter,P 2C computes the common

85

13

0

1

2

3

4

5

6

7

8

9

10

12

11

13

14

15

0 1 2 3 4 5 6 7 8 9 10 1211 14 15

a

b

c

e

f

g

h

j

k

d

i

e,f,i,j

Port
RFC eqID

A
dd

re
ss

R
F

C
eq

ID

00
0

e,f,i,j,k

e,f,i,j

c,e,i,j

e,i,j

d,e,i

b,e,i

e,g,i

e,g,h,i

a,e,g,h,i

e,g,h,i

0000

0001

0000

0010

0011

0100

0101

0110

0111

1000

0111

d
,g

,h
,k

d
,f
,g

,h
,k

d
,h

,k

c,
d,

h
,k

d
,h

,i,
k

d
,h

,k d
,j

a
,d

,j

d
,j

b
,d

,j

d
,j

e
,d

,j

00
1

01
0

01
1

10
0

01
0

10
0

10
0

10
0

10
1

11
0

11
1

Figure 4.18: Example ofRecursive Flow Classification(RFC) using the filter set in Table 4.2.

bits of all the encodings for the elementary intervals covered by the given filter field. This com-

putation produces a ternary search string for each filter field. The ternary strings for each fieldare

concatenated and stored in a TCAM according to the filter priority.

Figure 4.19 shows an example of the first, and most update efficient,P 2C encoding tech-

nique for theport fields of the filters in Table 4.2. In this encoding technique, we organize the

ranges defined by the filters in the filter set into a multi-layer hierarchy such that the rangesat each

layer are non-overlapping and the number of layers is minimized. Note that the number of layers is

equal to the maximum number of overlapping ranges for any port number. At each layer, we assign

a unique label to the ranges using the minimum number of bits. Within each layer, regions not

covered by a range may share the same label. Next, we compute an intermediate bit-vector for each

elementary intervalX1, . . . , X11 defined by the filter fields. We form an intermediate bit-vector

86

130 1 2 3 4 5 6 7 8 9 10 1211 14 15

a b d c f

k

g j

h

Layer, [vector bits]

3, [6:5]

2, [4:3]

1, [2:0]

01 00 10 00

00

000 001 000 010 011 000 100 101

01 11

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

k

j

i

h

g

f

e

d

c

b

a

Filter

0*11*0*

1011101

010100*

0*0100*

0*11101

0000011

0000100

0000010

0101001

Ternary Match

Condition

X11

X10

X9

X8

X7

X6

X5

X4

X3

X2

X1

Elementary

Interval

1011101

0011101

0011101

0011100

0011000

0000011

0000010

0001000

0101000

0101001

0101000

Intermediate

Vector[6:0]

Elementary
Intervals

Figure 4.19: Example ofParallel Packet Classification(P 2C) using the most update-efficient en-
coding style for the port ranges defined in the filter set in Table 4.2.

by concatenating the labels for the covering ranges in each layer. Consider elementary intervalX2

which is covered by rangeh(01) in layer 3,g(01) in layer 2, anda(001) in layer 1; its intermediate

bit vector is0101001. Finally, we compute the ternary match condition for each filter by computing

the common bits of the intermediate bit-vectors for the set of elementary intervals covered by each

filter. For each bit position in the intermediate bit-vectors, if all elementary intervals share the same

bit value, then we assign that bit value to the corresponding bit position of the ternary match string;

otherwise, we assign a “don’t care”,∗, to the bit position in the ternary match string. Consider filter

g which covers elementary intervalsX1, X2, X3, andX4. For all bit-vectors, the most significant

bit is ‘0’ but they differ in the next bit position; thus, the ternary match string forg begins with0∗.

Once we construct the table of ternary match strings for each filter field, we concatenate the

field strings associated with each filter and store it in a TCAM. Strings are stored in order of filter

87

priority. We also construct a data structure for each filter field which returns the intermediate bit-

vector for the elementary interval covering the given packet field. A search locates the best-matching

filter for a packet by searching these data structures in parallel, concatenating the intermediate bit-

vectors to form a search key, and querying the TCAM with the search key. For the singlefield

searches, the authors employ theBARTstechnique which restricts independent field searches to

be either prefix or exact match [65]. Arbitrary ranges must be converted to prefixes, increasing

the number of unique field specifications. The primary deficiency ofP 2C is its use of elementary

intervals, as a single filter update may add or remove several elementary intervals for each field.

When using the most space efficient encoding techniques, it is possible for one filter update to

require updates to every primitive range encoding. Using the most update efficientencoding, the

number and size of intermediate results grows super-linearly with the number of filters. For a

sample filter set of 1733 filters,P 2C required 2k bytes of SRAM and 5.1k bytes of TCAM. The

same filter set requires 24k bytes using a standard TCAM exclusively, thusP 2C reduced TCAM

storage requirements by a factor of 4.7 and required only 1.2 bytes of SRAM perfilter.

4.4.6 Distributed Crossproducting of Field Labels (DCFL)

Distributed Crossproducting of Field Labels(DCFL) leverages filter set characteristics, decomposi-

tion, and a novel labeling technique to construct a packet classification techniquetargeted to high-

performance hardware implementation. We provide a complete description of DCFL in Chapter 7,

but include a brief introduction to the algorithm here in order to place it in context with the body of

related work. Two observations motivated the development of DCFL: the structure ofreal filter sets

and advancements in integrated circuit technology. As we discuss in Chapter 5,we found that the

number of unique filter field values matching a given packet are inherently limitedin real filter sets.

Likewise, the number of combinations of unique filter field values matching a given packet are also

limited. As we discuss in Section 4.7, modern Application Specific Integrated Circuits (ASICs) and

Field-Programmable Gate Arrays (FPGAs) provide millions of logic gates and hundreds of large

multi-port embedded memory blocks in a single device. Using a high degree of parallelism, DCFL

employs independent search engines for each filter field and aggregates the results of each field

search in a distributed fashion; thus, DCFL avoids the exponential increase in time or space in-

curred when performing this operation in a single step as in the originalCrossproductingtechnique

discussed in Section 4.4.3.

The first key concept in DCFL is labeling unique field values with locally unique labels. In

Figure 4.20, we show the labeling step for the same example filter set used in Figure 4.17.As in

Crossproducting, DCFL begins by creating sets of unique filter field values. Note that DCFL assigns

a locally unique label to each field value and records the number of filters specifyingthe field value

in the “count” value. The count values are incremented and decremented as filters specifying the

corresponding fields are added and removed from the filter set. A data structure in a field search

engine or aggregation node only needs to be updated when the “count” value changes from 0 to

88

1 or 1 to 0. Given the sets of labels for each field, we can construct a unique label for each filter

by simply concatenating the labels for each field value in the filter. For example, filterj may be

uniquely labeled by(5, 3, 1), where the order of field labels is (Address, Port, Protocol). The use of

labels allows DCFL to aggregate the results from independent field searches using set membership

data structures that only store labels corresponding to field values and combinations offield values

present in the filter table. As shown in thePort-Protocol Label Setin the first aggregation node in

Figure 4.21, we represent the unique combinations of port and protocol valuesspecified by filters in

the filter set by concatenating the labels for the individual field values5.

We provide an example of a DCFL search in Figure 4.21 using the filter set and labeling

shown in Figure 4.20 and a packet with the following header fields: address 0011, port 1, and

protocol TCP. We begin by performing parallel searches on the individual packet fields and returning

all matching results. In Figure 4.21 we employ a range tree for the port ranges, a direct lookup table

for the protocol fields, and a binary trie for the address prefixes. Note that various options exist for

each type of search and DCFL allows each search engine to apply local optimizations. DCFL allows

intermediate result aggregation to occur in any order. In our example, we first aggregate the results

from the port and protocol field searches. We form the set of all possible matching port-protocol

pairs,Fquery(y, z), by computing the crossproduct of the results from the field searches. Since the

field searches returned three port range labels and two protocol field labels,Fquery(y, z) contains

six port-protocol labels. For each label inFquery(y, z), we perform a set membership query in the

Port-Protocol Label Set. Labels that are members of the set are passed on to the next aggregation

node. DCFL utilizes several efficient data structures for performing set membership queries in

aggregation nodes. Note that three port-protocol labels are passed on to the second aggregation

node. We perform the same steps to form the set of possible matching filter labels,Fquery(x, y, z),

and probe theFilter Label Set. In this example, three filters match the packet. The labels for the

matching filters are passed on to a final priority resolution stage that selects the highest priority filter

or set of filters.

In addition to the labeling concepts and efficient set membership data structures, we also

introduce the concept ofMeta-Labelingwhich reduces the memory requirements for aggregation

nodes. They also provide techniques for minimizing the number of set membership queries at each

aggregation node by computing the optimal ordering of aggregation nodes andlimiting the number

of labels returned by field search engines. The latter is achieved by a novel technique calledField

Splitting which we do not discuss in this survey. Using a collection of 12 real filter sets and the

ClassBenchtools suite, we provide analyses ofDCFL performance and resource requirements on

filter sets of various sizes and compositions in Section 7.7. For the 12 real filter sets, we show

that the worst-case number of sequential memory accesses is at most ten and memory requirements

are at most 40 bytes per filter. Based on these results, an optimized implementation ofDCFL can

5Count values are maintained for the sets of unique fi eld value combinations, like thesets of unique fi eld values shown
in Figure 4.20. We do not show the count values in the example in Figure 4.21.

89

*

UDP

TCP

TCP

UDP

UDP

UDP

UDP

UDP

TCP

TCP

Protocol

k

j

i

h

g

f

e

d

c

b

a

Filter

(5,3,1)[0:15]*

(5,3,2)[0:15]*

(1,1,0)[1:1]001*

(3,0,0)[0:1]10*

(0,2,1)[5:15]000*

(4,3,1)[0:15]111*

(1,2,1)[5:15]001*

(3,2,1)[5:15]10*

(2,1,1)[1:1]1101

(1,0,0)[0:1]001*

(0,0,0)[0:1]000*

LabelPortAddress

*

111*

10*

1101

001*

000*

Address

5

4

3

2

1

0

Label

2

1

2

1

3

2

Count

[0:15]

[5:15]

[1:1]

[0:1]

Port

3

2

1

0

Label

3

3

2

3

Count

*

UDP

TCP

Protocol

2

1

0

Label

6

1

4

Count

Filter Set

Field Sets

Figure 4.20: Example of encoding filters with field labels inDistributed Crossproducting of Field
Labels(DCFL) using same filter table as Figure 4.17; count values support dynamic updates.

provide over 100 million searches per second and storage for over 200 thousandfilters with current

generation hardware technology. Like several other packet classification techniques, DCFL provides

the freedom to trade off memory for higher throughput. We also show that adding anadditional

aggregation node increases memory requirements by a modest 12.5 bytes per filter. Based on this

observation, we assert that DCFL demonstrates scalability to additional filter fields.

90

Port-Protocol
Label Set

(0,0) (1,1) (2,1)
(3,1) (1,0) (3,2)

Fquery(x,y,z)
(1,0,0) (5,0,0) (1,1,0)
(5,1,0) (1,3,2) (5,3,2)

1

0

0

0

1

0

01

1

1

1

5

0

2

3

4

[0:15]
3

[0:1]
0

[5:15]
2

[1:1]
1

1, 2UDP

0, 2TCP

0011 TCP1 payload

Matching
Protocol
Labels

0, 2

Matching
Port Labels

0, 1, 3

Matching
Address Labels

1, 5

Aggregation Node Aggregation Node

Filter Label Set
(0,0,0) (1,0,0) (2,1,1)
(3,2,1) (1,2,1) (4,3,1)
(0,2,1) (3,0,0) (1,1,0)

(5,3,1) (5,3,2)

Matching
Filter Labels

(1,0,0)b
(1,1,0)i
(5,3,2)kFquery(y,z)

(0,0) (0,2)
(1,0) (1,2)
(3,0) (3,2)

Matching
Port-Protocol

Labels
(0,0)
(1,0)
(3,2)

packet

Figure 4.21: Example of search usingDistributed Crossproducting of Field Labels(DCFL)

4.5 Tuple Space

We have discussed three high-level approaches to the packet classification problem thus far. The last

high-level approach in our taxonomy attempts to quickly narrow the scope of a multiple field search

by partitioning the filter set by “tuples”. A tuple defines the number of specified bits in each field

of the filter. Motivated by the observation that the number of distinct tuples is much less than the

number of filters in the filter set, Srinivasan, Suri, and Varghese introduced the tuple space approach

and a collection ofTuple Space Searchalgorithms in a seminal paper [66].

91

Table 4.3: Example filter set; address fields are 4-bits and port ranges cover 4-bit port numbers.

Filter SA DA SP DP Prot Tuple
a 0∗ 001∗ 2 : 2 0 : 15 TCP [1, 3, 2, 0, 1]
b 01∗ 0∗ 0 : 15 0 : 4 UDP [2, 1, 0, 1, 1]
c 0110 0011 0 : 4 5 : 15 TCP [4, 4, 1, 1, 1]
d 1100 ∗ 5 : 15 2 : 2 UDP [4, 0, 1, 2, 1]
e 1∗ 110∗ 2 : 2 0 : 15 UDP [1, 3, 2, 0, 1]
f 10∗ 1∗ 0 : 15 0 : 4 TCP [2, 1, 0, 1, 1]
g 1001 1100 0 : 4 5 : 15 UDP [4, 4, 1, 1, 1]
h 0011 ∗ 5 : 15 2 : 2 TCP [4, 0, 1, 2, 1]
i 0∗ 110∗ 2 : 2 0 : 15 UDP [1, 3, 2, 0, 1]
j 10∗ 0∗ 2 : 2 2 : 2 TCP [2, 1, 2, 2, 1]
k 0110 1100 0 : 15 0 : 15 ICMP [4, 4, 0, 0, 1]
l 1110 ∗ 2 : 2 0 : 15 ∗ [4, 0, 2, 0, 0]

130 1 2 3 4 5 6 7 8 9 10 1211 14 15

Nesting Level

0

1

2

0

0

0 1

Range ID

Figure 4.22: Example of assigning tuple values for ranges based onNesting LevelandRange ID.

In order to illustrate the concept of tuples, we provide an example filter set of filters clas-

sifying on five fields in Table 4.3. Address prefixes cover 4-bit addresses and port ranges cover

4-bit port numbers. For address prefix fields, the number of specified bits is simply the number

of non-wildcard bits in the prefix. For the protocol field, the value is simply a Boolean:‘1’ if a

protocol is specified, ‘0’ if the wildcard is specified. The number of specified bits in a port range

is not as straightforward to define. The authors introduce the concepts ofNesting LevelandRange

ID to define the tuple values for port ranges. Similar to theP 2C encoding technique discussed in

Section 4.4.5, all ranges on a given port field are placed into a non-overlappinghierarchy. TheNest-

ing Levelspecifies the “layer” of the hierarchy and theRange IDuniquely labels the range within

its “layer”. In this way, we convert all port ranges to a (Nesting Level, Range ID) pair. TheNesting

Levelis used as the tuple value for the range, and theRange IDis used to identify the specific range

within the tuple. We show an example of assigningNesting LevelandRange IDfor the source port

ranges of Table 4.3 in Figure 4.22. Given these definitions of tuple values, we list the tuple of each

filter in Table 4.3 in the last column.

Since the tuple specifies the valid bits of its constituent filters, we can probe tuples for

matching filters using a fast exact match technique like hashing. We probe a tuple fora matching

92

filter by using the bits of the packet field specified by the tuple as the search key. For example, we

construct a search key for the tuple[1, 3, 2, 0, 1] by concatenating the first bit of the packet source

address, the first three bits of the packet destination address, theRange IDof the source port range

at Nesting Level2 covering the packet source port number, theRange IDof the destination port

range atNesting Level0 covering the packet destination port number, and the protocol field.

All algorithms using the tuple space approach involve a search of the tuple space or asubset

of the tuples in the space. Probes to separate tuples may be performed independently, thus tuple

space techniques can take advantage of parallelism. The challenge in designing aparallel imple-

mentation lies in the unpredictability of the size of the tuple space or subset to be searched. As a

result the realizable lookup performance for tuple space techniques varies widely. Implementations

of tuple space techniques can also be made memory efficient due to the effective compression of the

filters. The masks or specification of valid bits for filters in the same tuple only needs to be stored

once; likewise, only the valid bits of those filters need to be stored in memory. For filter setswith

many fields and many wildcards within fields, tuple space techniques can be more space efficient

than theO(N) exhaustive techniques discussed in Section 4.2.

4.5.1 Tuple Space Search & Tuple Pruning

The basicTuple Space Searchtechnique introduced by Srinivasan, Suri, and Varghese performs an

exhaustive search of the tuple space [66]. For our example filter set in Table 4.3,a search would

have to probe seven tuples instead of searching all 12 filters. Using a modest set of realfilter

sets, the authors found thatTuple Space Searchreduced the number of searches by a factor of four

to seven relative to an exhaustive search over the set of filters6. The basic technique can provide

adequate performance for large filter sets given favorable filter set properties and amassively parallel

implementation.

Motivated by the observation that no address has more than six matching prefixes in back-

bone route tables, the authors introduced techniques to limit the number of tuples that need to be

searched exhaustively.Pruned Tuple Space Searchreduces the scope of the exhaustive search by

performing searches on individual filter fields to find a subset of candidate tuples. Whileany field

or combinations of fields may be used for pruning, the authors found that pruningon the source

and destination address strikes a favorable balance between the reduction in candidate tuples and

overhead for the pruning steps. We provide an example of pruning on the source and destination

addresses in Figure 4.23. In this case, we begin by constructing tries for the source and destination

address prefixes in the filter set in Table 4.3. Nodes representing valid prefixes store a list of tuples

containing filters that specify the prefix7. We begin aPruned Tuple Space Searchby performing

independent searches of the source and destination tries. The result of each search isa list of all

6We make a simplifying assumption that a probe to a tuple is equivalent to examining one fi lter in an exhaustive
search.

7Note that the list of tuples may also be represented as a bitmap as in theParallel BVtechnique.

93

[4,0,1,2,1]
[4,0,2,0,0]

[1,3,2,0,1]

[2,1,0,1,1]

[4,4,1,1,1]
[4,4,0,0,1]

[2,1,0,1,1]
[2,1,2,2,1][2,1,0,1,1]

0 0

0

1

1

1

[1,3,2,0,1] [1,3,2,0,1]

[4,0,1,2,1] [4,4,1,1,1]
[4,4,0,0,1]

[4,4,1,1,1] [4,0,1,2,1] [4,0,2,0,0]

0

0 0

0 0

1

11

1 1

[2,1,0,1,1]
[2,1,2,2,1]

0

0

1

1

[1,3,2,0,1]

[4,4,1,1,1]

0

0

1

1

Source Address Pruning Trie

Destination Address Pruning Trie Example
SA: 1001
DA: 1101

Pruned Tuples:
[2,1,0,1,1]
[1,3,2,0,1]

Figure 4.23: Example ofTuple Pruningto narrow the scope of theTuple Space Search; the set of
pruned tuplesis the intersection of the sets of tuples found along the search paths for each field.

possible candidate tuples for each field. In order to construct the list of candidate tuples for the

packet, we compute the intersection of the tuple lists returned by each search. Note that this is very

similar to theParallel Bit-Vectortechnique discussed in Section 4.4.1. The key difference is that

Pruned Tuple Space Searchcomputes the candidatetuplesrather than the overlappingfilters. In our

example in Figure 4.23, we demonstrate pruning for a packet with source address 1001 and desti-

nation address 1101. In this case, we only have to probe two tuples instead of sevenin the basic

search. Using a modest set of real filter sets, the authors found thatPruned Tuple Space Search

reduced the number of searches by a factor of three to five relative to the basicTuple Space Search,

and a factor of 13 to 26 relative to an exhaustive search over the set of filters.

Srinivasan expanded this set of algorithms withEntry Pruned Tuple Search(EPTS) [67].

This technique seeks to optimize thePruned Tuple Searchalgorithm by eliminating the need to

store a search data structure for each dimension by storing pruning information withmatchesin the

94

c g
k

a e
i

T

b f

j

SA

DA

1 2 3 4

1

2

3

4

Figure 4.24: Example ofRectangle Searchon source and destination prefixes of filters in Table 4.3.

tuples. The tuple pruning information is stored with each filter in the form of a bitmap of tuples

containing non-conflicting filters. These bitmaps may be precomputed for each filter in thefilter set.

The author presents an algorithm to compute the tuple bitmaps inO(TN), whereT is the number

of tuples andN is the number of filters.

4.5.2 Rectangle Search

In their seminal paper, Srinivasan, Suri, and Varghese also present theRectangle Searchalgorithm

that provides theoretically optimal performance for packet classification on two fields without mak-

ing assumptions about the structure of the filter set.Rectangle Searchemploys the concepts ofmark-

ers andprecomputationintroduced by theBinary Search on Prefix Lengthstechnique for longest

prefix matching [24]. As shown in Figure 4.24, the tuple space for filters with two prefix fields may

be viewed as a grid of rectangles where each rectangle is a tuple. For this example, we use the source

and destination addresses of the filters in the example filter set shown in Table 4.38. Implementing

an exhaustive search over the grid of tuples requiresW 2 probes in the worst case.

The strategy ofRectangle Searchis to leverage precomputation and markers to limit the

number of probes to at most(2W − 1) whereW is the address length. Each filter mapping to a

tuple [i, j] leaves amarker in each tuple to its left in its row. For example, a filter(110∗, 0111)

stored in tuple[3, 4] leavesmarkers(11∗, 0111) in [2, 4] and(1∗, 0111) in [1, 4]. For all filters and

markers in a tuple[i, j], we canprecomputethe best matching filter from among the filters stored

in less specific tuples. Consider tuple[2, 2], labeledT in Figure 4.24. Graphically, less specific

tuples are those in the shaded quadrant above and left ofT in Figure 4.24. For example, if a marker

[01∗, 00∗] were stored inT , then we wouldprecomputethe best matching filterb and store it with

the marker inT .
8Note that fi lters containing a wildcard are not included; these fi lters may be searchedby maintaining separate search

tries.

95

Rectangle Searchbegins at tuple[1, W], the bottom-left tuple. If a matching filter is found,

then we need not search any tuples above and left of this tuple due to precomputation. The search

moves one tuple to the right to the next tuple in the row. If no matching filter is found in the tuple,

then we need not search search any tuples below and right of this tuple due to markers. The search

moves one tuple up to the next tuple in the column. Note that the worst-case search path follows

a staircase pattern from tuple[1, W] to tuple[W, 1] probing a total of(2W − 1) tuples.Rectangle

SearchrequiresO(NW) memory as each filter may leave a marker in at mostW tuples to its left in

its row. The authors proved that(2W − 1) probes is the theoretical lower bound for two fields and

extend this bound to show that ford fields the lower bound is:

W (d−1)

d!
(4.5)

4.5.3 Conflict-Free Rectangle Search

Warkhede, Suri, and Varghese provide an optimized version ofRectangle Searchfor the special

case of packet classification on aconflict-freefilter set [68]. A filter set is defined to beconflict-free

if there is no pair of overlapping filters in the filter set such that one filter is more specific than

the other in one field and less specific in another field. The authors observe that in real filter sets

conflicts are rare; furthermore, techniques exist to resolve filter conflicts by inserting a small set of

resolving filtersthat resolve filter conflicts [69].

Conflict-Free Rectangle Searchbegins by mapping the filter set to theW ×W tuple space.

Using precomputation and markers, the authors prove that a binary search can be performed on the

columns of the grid due to theconflict-freenature of the filter set. This provides anO(log2 w) bound

on the number of tuple probes and anO(n log2 w) bound on memory.

4.6 Caching

Finally, we briefly discuss caching, a general technique that can be combined withany search tech-

nique to improve average performance. A cache is a fast storage buffer for commonly referenced

data. If data requests contain sufficient locality, the average time to access data is significantly re-

duced when the time to access the cache is significantly less than the time to access other storage

media [70]. In the context of packet classification, the lookup time is significantly reduced if the

time to perform a cache query is significantly less than the time to perform a full lookup. The

efficacy of caching schemes largely depends on the data request patterns ofthe application.

Caching techniques have met with much skepticism from the research community dueto the

“wire-speed requirement” discussed in Section 1.3.1. In short, improving average case performance

is irrelevant if we we evaluate packet classification techniques based on worst-case performance.

Another argument against caching is the perception that packet flows on high-speed links lack lo-

cality of reference. As link speeds have increased, caching schemes have also met with increasing

96

skepticism due to the question of sufficient temporal locality. This question arises due to thefact

that the bandwidth requirement of the average packet flow has not increased at the same rate as link

capacity. To put it simply: as link bandwidth increases, the number of flows sharingthe link also

increases. In order for a caching scheme to retain its effectiveness, we must scale the size of the

cache with the link speed. Consider the example of a 10 Gb/s link supporting individual flows with

peak rates of at most 1 Mb/s. The packet of a given flow will appear at most once in ten thousand

packets, thus the cache must have a minimum capacity of ten thousand entries.

Despite the skepticism, a number of cache designs for packet classification have emerged

[71, 72, 73]. One intriguing design utilizes Bloom filters and allows for a small probability of

misclassification [71]. Holding the misclassification probability to approximately one in a billion,

the authors measured an average cache hit-rate of approximately 95 percent using4KB of memory

and real packet traces collected from an OC-3 link; thus, only five percent of thetraffic required a

full classification lookup. While these results are compelling for low-speed links, the viability of

caching for OC-192 (10 Gb/s) links remains an open question. It is a difficult one to answer due to

the technical challenges of collecting packet traces from such high-speed links. Ifwe simply scale

the size of the cache with link speed, this Bloom filter approach would require 256k bytes of cache

memory which may be prohibitively large in some applications.

4.7 Discussion

We have presented a survey of packet classification techniques. Using a taxonomy based on the

high-level approach to the problem and a minimal set of running examples, we attempted to provide

the reader with a deeper understanding of the seminal and recent algorithms andarchitectures, as

well as a useful framework for discerning the relationships and distinctions. While we mentioned

the simulation results reported by the authors of the literature introducing each technique,we con-

sciously avoided a direct comparison of the techniques based on throughput, memory requirements,

or update performance. Given the various implementation options and variability insimulation pa-

rameters, a fair comparison using those metrics is difficult. We believe that future high-performance

packet classifiers will invariably be implementations of hybrid techniques that borrowideas from a

number of the previously described techniques. In closing, we would like to briefly highlight the

implementation platforms for current and future packet classifiers.

Thanks to the endurance of Moore’s Law, integrated circuits continue to provide better per-

formance at lower cost. Application Specific Integrated Circuits (ASICs) and Field-Programmable

Gate Arrays (FPGAs) provide millions of logic gates and millions of bits of memory distributed

across many multi-port embedded memory blocks. For example, a current generation Xilinx FPGA

operates at over 400 MHz and contains 556 dual-port embedded memory blocks, 18Kb each with

36-bit wide data paths for a total of over 10Mb of embedded memory [44]. Current ASIC standard

97

cell libraries offer dual- and quad-port embedded SRAMs operating at 625MHz [74]. It is stan-

dard practice to utilize several embedded memories in parallel in order to achieve wide data paths.

Dual Data Rate (DDR) and Quad Data Rate (QDR) SRAM technologies provide highbandwidth

interfaces to several mega-bytes of off-chip memory [63, 75]. Network processors also provide a

flexible platform for implementing packet classification techniques [76, 77, 78]. A number of cur-

rent generation processors provide hardware assists for packet classification, interfacesto TCAM,

and/or special instructions for search applications such as hash functions.

98

Chapter 5

Analysis of Real Filter Sets

There are three kinds of lies: lies, damned lies, and statistics.

Benjamin Disraeli, British Prime Minister (1868, 1874-1878)

Recent efforts to identify better packet classification techniques have focused on leveraging

the characteristics of real filter sets for faster searches. While lower bounds for the general multi-

field searching problem have been established, observations made in recent packet classification

work offer enticing new possibilities to provide significantly better performance. In this chapter, we

summarize the observations made in the literature and report the results of our additionalanalyses.

We also seek to identify and understand the impetus for the observed structure of filter sets, to report

other potentially useful characteristics for increasing the performance of packet classifiers, and to

develop metrics and characterizations of filter set structure that aid in generating synthetic filter sets.

We performed a battery of analyses on 12 real filter sets provided by Internet Service

Providers (ISPs), a network equipment vendor, and other researchers working in the field. The

filter sets range in size from 68 to 4557 entries and utilize one of the following formats:

• Access Control List (ACL) - standard format for security, VPN, and NAT filters for firewalls

and routers (enterprise, edge, and backbone)

• Firewall (FW) - proprietary format for specifying security filters for firewalls

• IP Chain (IPC) - decision tree format for security, VPN, and NAT filters for software-based

systems

Due to confidentiality concerns, the filter sets were provided without supporting informationre-

garding the types of systems and environments in which they are used. We are unable to comment

on “where” in the network architecture the filter sets are used: enterprise core routers, ISP edge

routers, backbone core routers, enterprise firewalls, etc. Nonetheless, the following analysispro-

vide invaluable insight into the structure of real filter sets. We observe that various useful properties

hold regardless of filter set size or format. The results of these analyses provide the foundation

99

for the benchmarking tools described in Chapter 6 and the basis for the new packet classification

technique,Distributed Crossproducting of Field Labels(DCFL), described in Chapter 7.

5.1 Understanding Filter Composition

Many of the observed characteristics of filter sets arise due to the administrative policies thatdrive

their construction. The most complex packet filters typically appear in firewall and edge router

filter sets due to the heterogeneous set of applications supported in these environments. Firewalls

and edge routers typically implement security filters and network address translation (NAT), and

they may support additional applications such as Virtual Private Networks (VPNs) andresource

reservation. Typically, these filter sets are created manually by a system administrator using a

standard management tool such as CiscoWorks VPN/Security Management Solution (VMS)[79]

and Lucent Security Management Server (LSMS) [80]. Such tools conform to a model of filter

construction which views a filter as specifying the communicating subnets and the application or

set of applications. Hence, we can view each filter as having two major components: an address

prefix pair and an application specification. The address prefix pair identifies the communicating

subnets by specifying a source address prefix and a destination address prefix. The application

specification identifies a specific application session by specifying the transport protocol, source

port number, and destination port number. A set of applications may be identified by specifying

ranges for the source and destination port numbers.

5.2 Previous Observations

Gupta and McKeown published a number of observations regarding the characteristics of real filter

sets which have been widely cited [50]. Others have performed analyses on real filtersets and

published their observations [58, 54, 28, 29, 77]. The following is a distillation of observations

relevant to our discussion:

• Current filter set sizes are small, ranging from tens of filters to less than 5000 filters. It

is unclear if the size limitation is “natural” or a result of the limited performance and high

expense of existing packet classification solutions.

• The protocol field is restricted to a small set of values. In most filter sets, TCP, UDP, and

the wildcard are the most common specifications; other specifications include ICMP, IGMP,

(E)IGRP, GRE and IPINIP.

• Transport-layer specifications vary widely. Common range specifications for port numbers

such as ‘gt 1023’ (greater than 1023) suggest that the use of range to prefix conversion tech-

niques may be inefficient.

100

• The number of unique address prefixes matching a given address is typically fiveor less.

• Most prefixes have either a length of 0 or 32; there are some prefixes with lengths of 21, 23,

24 and 30.

• The number of filters matching a given packet is typically five or less.

• Different filters often share a number of the same field values.

The final observation has been a source of deeper insight and a springboard for several recent con-

tributions in the area. We thoroughly explore the implications of this observation in Section5.7.

Kounavis, et. al. performed a thorough analysis of four ACLs and proposed a general

framework for packet classification in network processors [77]. The authors made a number of

interesting observations and assertions. Specifically, they observed a dependency between the size

of the ACL and the number of filters that have a wildcard in the source or destination IPaddress.

The authors refer to filters that contain a wildcard in either the source or destination addressas

“partially specified”. They found that partially specified filters comprise a smaller proportion of

the filter set as the number of filters increases. Specifically, 83% of the filters in the smallest ACL

were partially specified while only 10% of the filters in the largest ACL were partially specified.

The authors also observed trends in the composition of partially specified filters. The smallest ACL

from an enterprise firewall had large numbers of partially specified filters with destination address

wildcards, while the largest ACL from an ISP had large numbers of partially specified filters with

source address wildcards. The authors suggest that these characteristics are a result of the“location”

of the ACL in the Internet. Small ACLs are “closer” to client subnets, therefore filters are used to

block traffic flows from a number of specific subnets. Large ACLs are “closer” to the Internet

backbone, thus filters are used to control access to a number of important servers or networks.

Kounavis, et. al. also found that the number of filters matching a packet is typicallyfour

with a maximum of seven. Inspired by the previously described model of filter construction, they

also investigated the possibility of first classifying a packet on the address prefix pair. The authors

performed an analysis of the overlap properties of address prefix pairs specified by the filter set.

Address prefix pairs overlap if they cover a common address pair or set of addresspairs. An example

is shown in Figure 5.1. They found that a majority of the overlaps are caused by partiallyspecified

filters, but the number of overlaps is orders of magnitude less than the theoretical upper bound.

Based on these results, the authors argue that such overlaps may be eliminated by inserting a small

number of filters that cover the overlaps caused by partially specified filters. This is essentially

independent verification of the findings of Hari, et. al. [69] and a similar approachto that employed

by Warkhede, et. al. [68]. Finally, Kounavis, et. al. found that the number of unique application

specifications (combination of transport protocol and port ranges) is small due to the limited number

of popular applications in the Internet.

101

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

a

ce

d

Destination Address

S
o

u
rc

e
A

d
d

re
ss

b

Overlapping
Fully-Specified

Address Prefix Pairs

Overlapping
Partially-Specified

Address Prefix Pairs

Figure 5.1: Example of overlaps formed by fully-specified and partially-specified address prefix
pairs.

5.3 Application Specifi cations

We analyzed the application specifications in the 12 filter sets in order to corroborate previous

observations as well as extract new, potentially useful characteristics.

5.3.1 Protocol

For each of the filter sets, we examined the unique protocol specifications and the distribution of

filters over the set of unique values. As shown in Table 5.1, filters specified one of nine protocols or

the wildcard. Note that two filter sets, fw2 and fw4, contain anonymized protocol numbers; there-

fore, we did not include them in our analysis. We observed the following protocol specifications,

listed in order of frequency of occurrence:

• Transmission Control Protocol (TCP), RFC793 [81]

• User Datagram Protocol (UDP), RFC768 [82]

• Wildcard

• Internet Control Message Protocol (ICMP), RFC792 [83]

• General Routing Encapsulation (GRE), RFC2784 [84]

• Open Shortest Path First (OSPF) Interior Gateway Protocol (IGP), RFC2178 [85]

• Enhanced Interior Gateway Routing Protocol (EIGRP), Cisco [86]

• IP Encapsulating Security Payload (ESP) for IPv6, RFC2406 [87]

102

Table 5.1: Observed protocols and filter distribution; values given as percentage(%) of filters in the
filter set.

Set ∗ ICMP IPE TCP UDP GRE ESP AH EIGRP OSPF
IGP

acl1 8.46 3.14 0.00 87.31 1.09 0.00 0.00 0.00 0.00 0.00
acl2 46.39 0.96 0.00 44.94 6.74 0.00 0.00 0.00 0.96 0.00
acl3 4.92 4.17 0.00 65.00 25.87 0.00 0.00 0.00 0.00 0.04
acl4 4.08 3.99 0.10 65.76 25.87 0.16 0.00 0.00 0.00 0.03
acl5 0.00 28.59 0.00 28.22 41.78 0.00 0.00 0.00 0.00 1.40
fw1 1.06 3.89 0.00 57.24 32.16 5.65 0.00 0.00 0.00 0.00
fw3 1.63 5.98 0.00 55.98 36.41 0.00 0.00 0.00 0.00 0.00
fw5 1.88 6.87 0.00 51.88 39.38 0.00 0.00 0.00 0.00 0.00
ipc1 34.49 1.12 0.00 26.15 37.72 0.29 0.12 0.12 0.00 0.00
ipc2 27.08 36.46 0.00 10.42 26.04 0.00 0.00 0.00 0.00 0.00
AVG 13.00 9.52 0.01 49.29 27.31 0.61 0.01 0.01 0.10 0.15

• IP Authentication Header (AH) for IPv6, RFC2402 [88]

• IP Encapsulation within IP (IPE), RFC2003 [89]

Like previous studies, the most common protocol specification is TCP. On average, TCPis spec-

ified by twice as many filters as the next most common protocol, UDP. The wildcard is the third

most common specification. All filter sets contain a small number of filters specifying ICMP.The

remaining six protocols are only specified by a few filters in a few of the filter sets.

5.3.2 Port Ranges

Next, we examined the port ranges specified by filters in the filter sets and the distribution offilters

over the unique values. In order to observe trends among the various filter sets, we define five classes

of port ranges:

• WC, wildcard

• HI, ephemeral user port range[1024 : 65535]

• LO, well-known system port range[0 : 1023]

• AR, arbitrary range

• EM, exact match

Motivated by the allocation of port numbers, the first three classes represent common specifications

for a port range. The last two classes may be viewed as partitioning the remaining specifications

based on whether or not an exact port number is specified. Table 5.2 showsthe distribution of

103

Table 5.2: Distribution of filters over the five port classes for source and destination portrange
specifications; values given as percentage (%) of filters in the filter set.

Set Source Port Destination Port
WC HI LO AR EM WC HI LO AR EM

acl1 100.0 0.00 0.00 0.00 0.00 30.42 0.00 0.00 11.60 57.98
acl2 100.0 0.00 0.00 0.00 0.00 69.34 0.64 0.00 7.06 22.95
acl3 99.92 0.00 0.00 0.00 0.08 9.25 13.96 0.00 11.04 65.75
acl4 99.93 0.00 0.00 0.00 0.07 8.56 12.15 0.00 11.21 68.08
acl5 100.0 0.00 0.00 0.00 0.00 30.00 4.08 0.00 5.20 60.72
fw1 77.74 8.13 0.00 0.35 13.78 31.10 8.13 0.00 0.35 60.42
fw2 38.24 17.65 0.00 0.00 44.12 100.0 0.00 0.00 0.00 0.00
fw3 77.72 5.98 0.00 0.54 15.76 27.72 5.98 0.00 0.54 65.76
fw4 10.98 42.05 10.98 1.52 34.47 13.26 18.94 0.76 1.14 65.91
fw5 75.62 5.00 0.00 0.62 18.75 35.62 3.75 0.00 1.25 59.38
ipc1 82.84 0.35 0.00 2.00 14.81 55.46 6.52 0.00 2.53 35.49
ipc2 73.96 0.00 0.00 0.00 26.04 73.96 0.00 0.00 0.00 26.04
AVG 78.08 6.60 0.92 0.42 13.99 40.39 6.18 0.06 4.33 49.04

filters over the five port classes for both source and destination ports. We observe some interesting

trends in the data. With rare exception, the filters in the ACL filter sets specify the wildcard for the

source port. A majority of filters in the ACL filters specify an exact port number for the destination

port. Source port specifications in the other filter sets are also dominated by the wildcard, but a

considerable portion of the filters specify an exact port number. Destination port specifications in

the other filter sets share the same trend, however the distribution between the wildcard and exact

match is a bit more even. After the wildcard and exact match, the HI port class is the most common

specification. A small portion of the filters specify an arbitrary range, 4% on average and at most

12%. Only one filter set contained filters specifying the LO port class for either the source or

destination port range.

In the interest of designing efficient data structures, we now examine the number of unique

specifications in the AR and EM classes. Checking for matches in the first three classes is trivial.

As shown in Table 5.3, the number of unique specifications in the AR class is small relative to the

size of the filter set. Consisting of 50 ranges, the largest set of arbitrary ranges may be efficiently

searched using a simple interval tree. Likewise the number of specifications in the EM class isalso

small, thus a simple hash table would be sufficient to search this set of ranges.

5.3.3 Port Pair Class

As previously discussed, the structure of source and destination port range pairs is a key point

of interest for both modeling real filter sets and designing efficient search algorithms. Wecan

characterize this structure by defining aPort Pair Class(PPC) for every combination of source and

104

Table 5.3: Number of unique specifications in the Arbitrary Range (AR) and ExactMatch (EM)
port classes for source and destination port ranges.

Set Size Source Port Destination Port
AR EM AR EM

acl1 733 0 0 34 73
acl2 623 0 0 1 24
acl3 2400 0 2 36 152
acl4 3061 0 2 50 183
acl5 4557 0 0 3 35
fw1 283 1 10 1 40
fw2 68 0 7 0 0
fw3 184 1 6 1 36
fw4 264 3 22 3 44
fw5 160 1 8 2 29
ipc1 1702 5 27 7 45
ipc2 192 0 2 0 2

destination port class. For example, WC-WC if both source and destination port rangesspecify the

wildcard, AR-LO if the source port range specifies an arbitrary range and the destination port range

specifies the set of well-known system ports. As shown in Figure 5.2, a convenient wayto visualize

the structure ofPort Pair Classesis to define aPort Pair Classmatrix where rows share the same

source port class and columns share the same destination port class. For each filter set, we examine

the PPC defined by filters specifying the same protocol. For all protocols except TCP andUDP,

the PPC is trivial – a single spike at WC/WC. Figure 5.2 highlights the uniqueness of PPC matrices

among different protocols and filter sets.

The combination of source and destination port range specifications has a significant effect

on several packet classification techniques. This is especially true of TCAM due to the need to

convert arbitrary range pairs into pairs of prefixes. See Section 4.2.2 for a discussion of TCAMs

and the need for range conversion. In order to assess the effect of this conversion,we computed the

number of TCAM entries required to store each filter set. We refer to theExpansion Factoras the

ratio of TCAM entries to filter set size, which can be thought of as the average number of TCAM

entries required by each filter in the filter set. As shown in Table 5.4, a filter set may requirethat a

TCAM provide more than six entries for every filter. On average, the filter sets required2.25 entries

per filter. While this is considerably less than the worst case of 900 entries per filter, yetit remains

a large source of inefficiency. The magnitude of theExpansion Factoris not the only challenge.

Note the high variance in theExpansion Factoramong the filter sets; this presents a challenge in

designing systems, as the filter storage capacity varies widely with filter set composition.

105

WC
HI

LO
AR

EM

EM
AR

LO
HI

WC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Destination Port Source Port

(a) acl1, TCP

WC
HI

LO
AR

EM

EM
AR

LO
HI

WC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Destination Port Source Port

(b) acl1, UDP

WC
HI

LO
AR

EM

EM
AR

LO
HI

WC

0

0.1

0.2

0.3

0.4

0.5

0.6

Destination Port Source Port

(c) fw4, TCP

WC
HI

LO
AR

EM

EM
AR

LO
HI

WC

0

0.1

0.2

0.3

0.4

0.5

0.6

Destination Port Source Port

(d) fw4, UDP

Figure 5.2: Port Pair Matrices for two filter sets.

5.4 Address Prefi x Pairs

A filter identifies communicating hosts or subnets by specifying a source and destination address

prefix, or address prefix pair. The speed and efficiency of several longest prefix matching and packet

classification algorithms depend upon the number of unique prefix lengths and the distribution of

filters across those unique values. We begin our analysis by examining the number of unique prefix

lengths. In Table 5.5 we report the number of unique source address prefix lengths,destinations

address prefix lengths, and source/destination prefix pair lengths for the 12 filter sets. A majority of

the filter sets have more unique source address prefix lengths than unique destination prefix lengths.

For all of the filter sets, the number of unique source/destination prefix pair lengths is small relative

to the filter set size and the number of possible combinations, 1024.

106

Table 5.4: Number of entries required to store filter set in a standard TCAM.

Set Size TCAM Expansion
Entries Factor

acl1 733 997 1.3602
acl2 623 1259 2.0209
acl3 2400 4421 1.8421
acl4 3061 5368 1.7537
acl5 4557 5726 1.2565
fw1 283 998 3.5265
fw2 68 128 1.8824
fw3 184 554 3.0109
fw4 264 1638 6.2045
fw5 160 420 2.6250
ipc1 1702 2332 1.3702
ipc2 192 192 1.0000
Average 2.3211

Table 5.5: Number of unique address prefix lengths for source address (SA), destination address
(DA), and source/destination address pairs (SA/DA).

Set Size SA DA SA/DA
acl1 733 6 20 31
acl2 623 13 13 50
acl3 2400 22 12 89
acl4 3061 22 15 98
acl5 4557 11 3 31
fw1 283 12 6 22
fw2 68 4 3 8
fw3 184 9 3 13
fw4 264 5 6 12
fw5 160 10 4 17
ipc1 1702 15 13 93
ipc2 192 4 2 5

107

Next, we examine the distribution of filters over the unique address prefix pair lengths.

Note that this study is unique in that previous studies and models of filter sets utilized independent

distributions for source and destination address prefixes. When constructing synthetic filter setsto

test new packet classification algorithms, researchers often randomly select address prefixes from

backbone route tables which are dominated by class C address prefixes (24-bit network address) and

aggregates of class A, B, and C address prefixes. As shown in Figure 5.3, real filter sets have unique

prefix pair distributions that reflect the types of filters contained in the filter set. For example, fully

specified source and destination addresses dominate the distribution for acl5 shown in Figure 5.3(a).

There are very few filters specifying a 24-bit prefix for either the source or destination address.Also

consider the distribution for fw1 shown in Figure 5.3(c). The most common prefix pair is a fully

specified destination address and a wildcard for the source address. This is due to the natureof

the filter set, a firewall limiting access to a key host. It is not possible to model the prefix pair

distribution using independent prefix length distributions, even if those distributions are takenfrom

real filter sets. Finally, we observe that while the distributions are sufficiently different from each

other a majority of the filters in the filter sets specify prefix pair lengths around the “edges” of

the distribution. Note that there are not large “spikes” in or around the centers of the distributions

in Figure 5.3. This implies that, typically, one of the address prefixes is either fully specified or

wildcarded.

By considering the prefix pair distribution, we characterize thesizeof the communicating

subnets specified by filters in the filter set. Next, we would like to characterize the relationships

among address prefixes and the amount of address space covered by the prefixes in the filter set.

Our primary motivation is to devise metrics to facilitate construction of synthetic filter sets that

accurately model real filter sets. Consider a binary tree constructed from the IP source address

prefixes of all filters in the filter set. From this tree, we could completely characterize the data

structure by determining a branching probability for each node. For example, assume that an address

prefix is generated by traversing the tree starting at the root node. At each node, the decision to take

to the 0 path or the 1 path exiting the node depends upon the branching probabilityat the node. For

a complete characterization of the tree, the branching probability at each node is unique. As shown

in Figure 5.4,p{0|11} is the probability that the 1 path is chosen at level 2 given that the 1 path was

chosen at level 0 and the 1 path was chosen at level 1.

Such a characterization is infeasible, hence we employ suitable metrics that capture the

important characteristics while providing a convenient abstraction. We begin by constructing two

binary tries from the source and destination prefixes in the filter set. Note that there is one level in

the tree for each possible prefix length 0 through 32 for a total of 33 levels. For each level in the

tree, we compute the probability that a node has one child or two children. Nodeswith no children

are excluded from the calculation. We refer to this distribution as theBranching Probability.

For nodes with two children, we computeskew, which is relative measure of the weights

of the left and right subtrees of the node. Subtree weight is defined to be the number of filters

108

1 7

13

19

25

31 32

25

18

11

4

0

100

200

300

400

500

600

DA Prefix Length
SA Prefix
Length

(a) acl1

1 6
11 16 21 26 31 32

26

20

14
8

2

0

500

1000

1500

2000

2500

3000

3500

DA Prefix Length SA Prefix
Length

(b) acl5

1 7

13

19

25

31 32

25

18

11

4

0

20

40

60

80

100

120

140

160

DA Prefix Length
SA Prefix
Length

(c) fw1

1 6

11 16 21 26

31 32

27
22

17
12

7 2

0

50

100

150

200

250

300

350

400

450

DA Prefix Length SA Prefix Length

(d) ipc1

Figure 5.3: Prefix length distribution for address prefix pairs.

specifying prefixes in the subtree, not the number of prefixes in the subtree. This definition of

weight accounts for “popular” prefixes that occur in many filters. Letheavy be the subtree with

the largest weight and letlight be the subtree with equal or less weight. The following is a precise

definition of skew:

skew = 1−
weight(light)

weight(heavy)
(5.1)

Note that this definition of skew provides an anonymous measure of address prefix structure, as it

does not preserve address prefix values. Consider the following example: given anodek with two

children at levelm, assume that 10 filters specify prefixes in the 1-subtree of nodek (the subtree

109

p{1}p{0}

p{0|0}

p{0|00}

p{0|1}

p{0|11}
p{1|00}

p{1|1}

p{1|11}

Figure 5.4: Example of complete statistical characterization of address prefixes.

15 5 35 7 15 22 2

skew
0.36

0.98

0.67 0.80 0.91

0.51 0.40

0.36

0.98

0.46

0.79

Figure 5.5: Example of skew computation for the first four levels of an address trie; shaded nodes
denote a prefix specified by a single filter; subtrees denoted by triangles with associated weight.

visited if the next bit of the address is 1) and 25 filters specify prefixes in the 0-subtree of nodek.

The 1-subtree is thelight subtree, the 0-subtree is theheavy subtree, and the skew at nodek is 0.6.

We compute the average skew for all nodes with two children at levelm, record it in the distribution,

and move on to level(m + 1). We provide and example of computing skew for the first four levels

of an address trie in Figure 5.5.

The result of this analysis is two distributions for each address trie, abranching probability

distribution and askewdistribution. We plot these distributions for the source address prefixes in

filter set acl5 in Figure 5.6. In Figure 5.6(a), note that a significant portion of the nodes inlevels zero

through five have two children, but the amount generally decreases as we move down the trie. The

increase at level 16 and 17 is a notable exception. This implies that there is a considerable amount

of branching near the “top” of the trie, but the paths generally remain containedas we move down

the trie. In Figure 5.6(b), we observe that skew for nodes with two children hovers around 0.5, thus

the one subtree tends to contain prefixes specified by twice as many filters as the other subtree. Note

that skew is not defined at levels where all nodes have one child. Also note thatlevels containing

110

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Source Address Trie Depth

D
is

tr
ib

u
ti

o
n

2 Children 1 Child

(a) Source address branching probability; average per level.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Source Address Trie Depth

S
ke

w
(n

o
d

es
w

it
h

2
ch

ild
re

n
)

(b) Source address skew; average per level for nodes with two children.

Figure 5.6: Source address branching probability and skew for filter set acl5.

nodes with two children may have an average skew of zero (completely balancedsubtrees), but this

is rare.

We plot the branching probability and skew for the destination address prefixes specified

by filters in filter set acl5 in Figure 5.7. Note that there is considerably less branching at levels 2

through 11 in the destination address trie; however, there is considerably more branching at lower

levels with a majority of the nodes at level 26 having two children. Likewise, the skewis high

(when it is defined) at levels 0 through 23, but significantly decreases at levels 24through 31. Thus

111

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Destination Address Trie Depth

D
is

tr
ib

u
ti

o
n

2 Children 1 Child

(a) Destination address branching probability; average per level.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Destination Address Trie Depth

S
ke

w
(n

o
d

es
w

it
h

2
ch

ild
re

n
)

(b) Destination address skew; average per level for nodes with two children.

Figure 5.7: Destination address branching probability and skew for filter set acl5.

destination address prefixes in acl5 will tend to be similar for the first 25 bits or so, then diverge.

Plots of branching probability and skew for additional filter sets may be found in Appendix A.

Branching probability and skew characterize the structure of the individual source and des-

tination address prefixes; however, it does not capture their interdependence.It is possible that some

filters in a filter set match flows contained within a single subnet, while others match flows between

different subnets. In order to capture this characteristic of a seed filter set, we measure the “correla-

tion” of source and destination prefixes. In this context, we define correlation to be the probability

that the source and destination address prefixes continue to be the same for a given prefix length.

112

This measure is only valid within the range of address bits specified by both address prefixes. While

this measure is not particularly insightful for the purpose of crafting search algorithms, it does allow

us to accurately model real filter sets.

Consider the example of a filter set containing filters that all specify flows contained within

the same class B network (16-bit network address); the correlation for levels 1 through 16 is1.0,

then falls off for levels 17 through 32 as the source and destination address prefixesdiverge. From

the seed filter set, we simply generate a probability distribution over the range of possible prefix

lengths,[1 . . . 32]. For the filter sets we studied, the address prefix correlation varies widely. The

correlation for filter set acl5 is shown in Figure 5.8(a). Note that approximately 80% of thefilters

contain source and destination address prefixes with the same first bit. For those with the samefirst

bit, they continue to be identical through the first 13 bits. Of those filters with source and destination

address prefixes with the same initial 13 bits, approximately 80% of those continue to be correlated

through bit 14, etc. Very few filters in acl5 contain address prefixes the remain correlatedthrough

bit 19. The correlation for filter set ipc1 is shown in Figure 5.8(b). Note that less than half of the

filters contain source and destination address prefixes with the same first bit. Likewise, very few

filters contain source and destination address prefixes that remain correlated through bit 26.

5.5 Scope

From a geometric perspective, a filter defines a region ind-dimensional space whered is the number

of fields specified by the filter. The volume of that region is the product of the one-dimensional

“lengths” specified by the filter. For example, length in the source address dimension corresponds

to the number of addresses covered by the source address prefix of the filter. Likewise,length in the

destination port dimension corresponds to the number of port numbers covered bythe destination

port range. Points in thed-dimensional space correspond to packet headers; hence, the geometric

volume translates to the number of possible packet headers that match the filter. Instead of geometric

lengths and volumes, we often refer to these filter properties in terms of atuplespecification. To be

specific, we define the filter 5-tuple as a vector containing the following fields:

• t[0], source address prefix length,[0...32]

• t[1], destination address prefix length,[0...32]

• t[2], source port range width, the number of port numbers covered by the range,[0...216]

• t[3], destination port range width, the number of port numbers covered by the range, [0...216]

• t[4], protocol specification, Boolean value denoting whether or not a protocol is specified,

[0, 1]

The tuple essentially defines thespecificityof the filter. Filters that are more specific cover a small

set of possible packet headers while filters that are less specific cover a large set of possible packet

113

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Address Prefix Length

C
o

rr
el

at
io

n

(a) acl5.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Address Prefix Length

C
o

rr
el

at
io

n

(b) ipc1

Figure 5.8: Address prefix correlation; probability that address prefixes of a filter continue to be the
same at a given prefix length.

headers. To facilitate filter set measurement and modeling, we define a new metric,scope, to be

the logarithmic measure of the number of possible packet headers covered by thefilter. Using the

5-tuple definition above, we definescopefor the 5-tuple as follows:

scope = lg{(232−t[0])× (232−t[1])× t[2]× t[3]× (28(1−t[4]))}

= (32− t[0]) + (32− t[1]) + (lg t[2]) + (lg t[2]) + 8(1− t[4]) (5.2)

114

Table 5.6: 5-tuple scope measurements, average (µscope) and standard deviation (σscope).

Set Size µscope σscope

acl1 733 25.0146 13.4585
acl2 623 51.6869 17.6880
acl3 2400 32.0168 15.6699
acl4 3061 30.9481 15.1367
acl5 4557 24.2274 8.0554
fw1 283 51.1686 15.6819
fw2 68 56.5842 23.0965
fw3 184 54.3004 14.8012
fw4 264 48.1127 27.9439
fw5 160 55.7881 16.9506
ipc1 1702 39.7172 19.4508
ipc2 192 47.0521 27.7966

Scope translates the filter tuple into a measure of filter specificity on a scale from 0 to 104. Scopeis

isomorphic to the logarithm of the geometric volume specified by the filter.

The average 5-tuple scope and standard deviation for the 12 filter sets is shown in Table 5.6.

The average 5-tuple scope ranges from 56 to 24. We note that filters in the ACL filter sets tend

to have narrower scope, while filters in the FW filter sets tend to have wider scope. While the

average scope of the filter sets does not vary drastically, the distributions of filter scope can exhibit

drastically different characteristics. Figure A.6 shows the 5-tuple scope distribution of filter set acl2

and acl5. The filters in acl2 are distributed among scope values between 16 and 80 withthe largest

concentration at 48. The filters in acl5 are much more concentrated with most filter distributed

among scope values between 16 and 32. The largest concentration is at scope16. Additional 5-

tuple scope distributions are provided in Appendix A.

5.6 Filter Overlap

Many previous studies have shown that the maximum number of filters that match a packet is small

for real filter sets, typically five to seven filters. Some recent studies have shown that the maximum

number of filters that partially match a packet is also limited [77, 58]. For example, consider a filter

set specifying 1000 filters on the standard 5-tuple. The number of filters that match the source and

destination address of a packet may be 20 or less; thus, an effective way to narrowthe scope of a

search is to first perform a match on the address prefix pair. This is precisely the approach taken in

Extended Grid-of-Tries(EGT) which we discussed in Section 4.3.2 [58].

The number of filters that match a packet for a partial or full match is often referred to as

“filter overlap”. This stems from the geometric view of filters where a packet defines a point in d-

dimensional space and filters which match the packet defined-dimensional polygons which contain

115

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

5-tuple scope

N
u

m
b

er
o

f
fi

lt
er

s

(a) acl2,µ = 51.7, σ = 17.7

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 10 20 30 40 50 60 70 80 90 100

5-tuple scope

N
u

m
b

er
o

f
fi

lt
er

s

(b) acl5,µ = 24.2, σ = 8.1

Figure 5.9: Distribution of 5-tuple scope for filters in filter sets acl2 and acl5.

the point. Filters which cover a set of common points in the space are said to overlap. Algorithms

such as EGT strongly rely on the filter overlap properties to hold. This is part of the reason that

Baboescu and Varghese restrict their performance claims for EGT to filter setscore routers, as these

filter sets tend to have few wildcards and limited prefix nesting. We performed filter overlap analyses

in order to evaluate the efficacy of such approaches for our set of 12 real filter sets. In Table 5.7,

we report the maximum number of filters matching a packet when matching on theindividual 5-

tuple fields (source address, destination address, etc.), the source/destination address prefix pair,

the application specification, and all filter fields. The number of filters matching a packet when

116

Table 5.7: Maximum number of filters matching any packet; partial matches for each field in the
5-tuple, source/destination address prefix pair (SA-DA), and application specification (SP-DP-PR);
full matches on all fields (All); matches; data from 12 real filter sets.

Set Size SA DA SP DP PR SA-DA SP-DP-PR All
acl1 733 119 49 733 306 702 21 283 5
acl2 623 159 110 623 489 569 38 465 8
acl3 2400 323 235 2399 622 1678 44 412 7
acl4 3061 336 279 3060 743 2138 41 468 6
acl5 4557 309 354 4557 2344 1904 30 1303 2
fw1 283 192 107 245 117 165 43 62 5
fw2 68 19 43 38 68 41 9 26 4
fw3 184 140 92 156 66 106 50 26 4
fw4 264 172 116 169 89 184 61 43 5
fw5 160 113 84 131 72 86 42 36 5
ipc1 1702 257 398 1472 1105 1229 45 815 17
ipc2 192 121 36 172 172 122 10 122 3

classifying on a single field is high. Likewise, we find that the number of filters matching a packet

when classifying on the address prefix pair is also high, up to 61 filters for filter set fw4. Clearly,

techniques likeExtended Grid-of-Tries(EGT) that depend on the limited filter overlap observed

in core router filter sets do not perform well for other types of filter sets. We also concludethat

performing a partial classification on the application specification is not helpful, as the number of

matching filters is even higher than for the address prefix pair. Previous studies reportedthat the

maximum number of filters matching a packet when classifying on all fields is typicallyless than

five or six. Our results provide a few notable exceptions, as we observe three filter sets where the

maximum numbers of matching filters is 7, 8, and 17.

5.7 Field Value Overlap

The observations made in previous studies and the model of filter construction discussedin Sec-

tion 5.1 suggest that the number of unique filter field values and combinations ofunique field values

that match a packet may be inherently limited. Previous studies observed that filters share common

field values; thus, the number of unique field values for a given filter field may be significantly less

than the number of filters. Likewise, the number of unique field values that a packet matches must

be less than or equal to the number of filters that match the packet when using thefield in the match.

For example, consider matching on the source address only. Assume there are 100filters in the filter

set; half of the filters specify the wildcard in the source address and half of the filters have afully

specified source address. The number of unique field values for the source address fieldis 51, the

wildcard and 50 fully specified addresses. The number of overlapping filters for a packet will be 50

or 51 depending on whether or not the packet’s source address is specified bya filter. The number

117

of unique field values that match a packet will be 1 or 2 depending on whether or not the packet’s

source address is specified by a filter.

Table 5.8 shows the number of unique filter field values and combinations of fieldfields for

the 12 real filter sets. Note that the number of unique fields are significantly less than the number

of filters in the filter set. In several of the ACL filter sets, all source port fields are wildcarded, thus

there is only one unique field value. We performed an exhaustive analysis of the maximum number

of unique field values and unique combinations of field values which match anypacket. A summary

of the results for unique single fields, address prefix pairs, and application specifications aregiven in

Table 5.9. Note that field overlap for address fields is more commonly referred to as prefix nesting.

Another way to think about this measurement is that it specifies the maximum number of prefixes

along any path from root to leaf in a trie defined by the unique address prefixes in the filterset.

Also note that the number of unique field values is significantly less than the number of filters and

the maximum number of unique field values matching any packet remains relatively constant for

various filter set sizes. We also performed the same analysis for every possible combination of

fields (every possible combination of two fields, three fields, etc.). There are

d
∑

i=1

(

d

i

)

(5.3)

unique combinations ofd fields. For the standard 5-tuple, there are 31 unique combinations of

fields. We observed that the maximum number of unique combinations of field values which match

any packet is typically bounded by twice the maximum number of matching single field values,

and also remains relatively constant for various filter set sizes. Finally, Table 5.9 also reports the

maximum number of unique field combinations that match a packet when classifying onAll fields.

This is identical to the measurement of the maximum number of filters that match a packet.

5.8 Additional Fields

An examination of real filter sets reveals that additional fields beyond the standard 5-tuple are rele-

vant. In 10 of the 12 filter sets that we studied, filters contain matches on TCP flags or ICMPtype

numbers. In most filter sets, a small percentage of the filters specify a non-wildcard value forthe

flags, typically less then two percent. There are notable exceptions, as approximately half the filters

in filter set ipc1 contain non-wildcard flags. We argue that new services and administrative poli-

cies will demand that packet classification techniques scale to support additional fields (i.e. more

“dimensions”) beyond the standard 5-tuple. It is not difficult to identify applications that could

benefit from packet classification on fields in higher level protocol headers. Consider the follow-

ing example: an ISP wants to deploy Voice over IP (VoIP) service running over an IPv6/UDP/RTP

stack for new IP-enabled handsets and mobile appliances. The ISP also wants to make efficient use

of expensive wireless links connecting Base Station Controllers (BSCs) to multiple Base Station

118

Table 5.8: Number of unique field values and combinations of field values specified by filters in 12
real filter sets.

Set Size SA DA SP DP PR Flag SA-DA SP-DP-PR
acl1 733 97 205 1 108 4 3 426 112
acl2 623 182 207 1 27 5 6 527 37
acl3 2400 431 516 3 190 5 3 1588 202
acl4 3061 574 557 3 235 7 3 2065 250
acl5 4557 169 80 1 40 4 2 1873 42
fw1 283 57 66 13 43 5 11 128 612
fw2 68 31 21 9 1 5 50 14
fw3 184 31 28 9 39 4 11 61 52
fw4 264 30 43 28 49 9 79 82
fw5 160 38 35 11 33 4 11 72 46
ipc1 1702 152 128 34 54 7 11 941 96
ipc2 192 29 32 3 3 4 8 122 5

Table 5.9: Maximum number of unique field values and combinations of field values matching a
packet; data from 12 real filter sets.

Set Size SA DA SP DP PR Flag SA-DA SP-DP-PR All
acl1 733 4 4 1 5 2 2 5 6 5
acl2 623 5 5 1 4 2 2 7 5 8
acl3 2400 6 4 2 6 2 2 7 7 7
acl4 3061 7 5 2 7 2 2 8 8 6
acl5 4557 3 2 1 4 1 2 3 3 2
fw1 283 4 4 3 3 2 2 7 4 5
fw2 68 3 3 2 1 2 4 3 4
fw3 184 4 3 3 3 2 2 7 4 4
fw4 264 3 4 4 3 2 6 4 5
fw5 160 5 4 3 3 2 2 7 4 5
ipc1 1702 4 5 4 5 2 2 10 8 17
ipc2 192 3 2 2 2 2 2 3 2 3

119

Transceivers (BSTs); hence, the ISP would like to use a header compression protocol likeRobust

Header Compression (ROHC). ROHC is a robust protocol that compresses packet headers for effi-

cient use of wireless links with high loss rates [90]. In order to support this, the BSC must maintain

a dynamic filter set which binds packets to ROHC contexts based on fields in the IPv6,UDP, and

RTP headers. A total of seven header fields (352 bits) must be examined in order to classify such

packets.

Matches on ICMP type number, RTP Synchronization Source Identifier (SSRC), and other

higher-level header fields are likely to be exact matches; therefore, the numberof unique field values

matching any packet are at most two, an exact value and the wildcard if present. There may be other

types of matches that more naturally suit the application, such as arbitrary bit masks on TCP flags;

however, we do not foresee any reasons why the structure of filters with these additional fields will

significantly deviate from the observed structure in current filter tables.

5.9 Impact of IPv6 Migration

While the current deployment of Internet Protocol Version 6 (IPv6) is extremely limited, most ob-

servers expect that migration to IPv6 from the current IPv4 protocol will eventually happen [9].

Currently, no filter sets containing rules with IPv6 addresses are available for study. A sense of

how IPv6 addresses will be managed and what impact these practices may have on the statistical

structure of filter sets may be garnered by examining IPv6 forwarding tables containing destination

address prefixes. In order to assess the current state of IPv6 forwarding tables, five IPv6 BGP table

snapshots were collected from several sites [91]. Figure 5.10 shows the combined distribution for

a total of 1,550 entries. The individual tables are sufficiently small, so the combined distribution

was chosen to reflect the overall trend. A significant feature is that the total number of unique pre-

fix lengths in the combined distribution is 14. We now investigate IPv6 address architecture and

deployment policies to gain a sense of whether or not the number of unique prefix lengths in for-

warding tables and filter sets is expected to grow significantly. The number of unique prefix lengths

is of greater interest than the distribution of prefixes among the prefix lengths for prefix matching

techniques which are well-suited for IPv6 [24, 25]. Such techniques provide a strong foundation for

developing packet classification techniques that perform well with IPv6 address fields.

5.9.1 Address Architecture

The addressing architecture for IPv6 is detailed in RFC 3513 [92]. In terms of the number ofprefix

lengths in forwarding tables, the important address type is the global unicast address which may

be aggregated [93]. RFC 3513 states that IPv6 unicast addresses may be aggregatedwith arbitrary

prefix lengths like IPv4 addresses under CIDR. While this provides extensive flexibility, we do not

foresee that this flexibility necessarily results in an explosion of unique prefix lengths. The global

unicast address format has three fields: a global routing prefix, a subnet ID, and an interface ID.

120

0

100

200

300

400

500

600

700

20 40 60 80 100 120

N
um

ne
r

of
 p

re
fix

es

Prefix Length

Figure 5.10: Combined prefix length distribution for IPv6 BGP route table snapshots.

All global unicast addresses, other than those that begin with 000, must have a 64-bit interface ID

in the Modified EUI-64 format. These identifiers may be of global or local scope; however, we are

only interested in the structure they impose on filter sets. In such cases, the global routing prefix

and subnet ID fields must consume a total of 64 bits.

Global unicast addresses that begin with 000 do not have any restrictions on interface ID

size; however, these addresses are intended for special purposes such as embedded IPv4 addresses.

Embedded IPv4 addresses provide a mechanism for tunneling IPv6 packets over IPv4 routing in-

frastructure. We anticipate that this special class of global unicast addresses will not contribute

many unique prefix lengths to IPv6 routing tables and will not affect the structure of current IPv4

filter sets.

5.9.2 Address Allocation & Assignment

[94] In a June 26, 2002 memo entitled, “IPv6 Address Allocation and Assignment Policy” the

Internet Assigned Numbers Authority (IANA) announced initial policies governing thedistribution

or “licensing” of IPv6 address space [94]. One of its stated goals is to distribute address space in a

hierarchical manner so as to “permit the aggregation of routing information by ISPs, andto limit the

expansion of Internet routing tables”. To that end, the distribution process is also hierarchical. IANA

has made initial distributions of /16 address blocks to existing Regional Internet Registries (RIRs).

The RIRs are responsible for allocating address blocks to National Internet Registries (NIRs)and

Local Internet Registries (LIRs). The LIRs and NIRs are responsible for assigning addresses and

address blocks to end users and Internet Service Providers (ISPs).

The minimum allocation of address space to Internet Registries is in units of /32 blocks.

LIRs must meet several criteria in order to receive an address allocation, including a plan to provide

121

IPv6 connectivity by assigning /48 address blocks. During the assignment process /64 blocks are

assigned when only one subnet ID is required and /128 addresses when only one device interface is

required. While it is not clear how much aggregation will occur due to ISPs assigning multiple /48

blocks, the allocation and assignment policy does provide significant structure. If thesepolicies are

followed, we anticipate that IPv6 routing tables and filter sets will not contain significantly more

unique prefix lengths than current IPv4 tables. It is also likely that the number of prefixes matching a

given IPv6 address will be equal or less than the number of prefixes matching a given IPv4 address.

122

Chapter 6

ClassBench: A Packet Classifi cation

Benchmark

The engineer is the key figure in the material progress of the world.

Sir Eric Ashby, Vice Chancellor of Cambridge University (1967-1969)

Due to the importance and complexity of the packet classification problem, a myriad of algorithms

and resulting implementations exist. The performance and capacity of many algorithmsand clas-

sification devices, including TCAMs, depend upon properties of the filter set and query patterns.

Unlike microprocessors in the field of computer architecture, there are no standard performance

evaluation tools or techniques available to evaluate packet classification algorithmsand products.

Network service providers are reluctant to distribute copies of real filter sets for security andcon-

fidentiality reasons, hence realistic test vectors are a scarce commodity. The small subset ofthe

research community who obtain real filter sets either limit performance evaluation to the small sam-

ple space or employ ad hoc methods of modifying those filter sets. In response to this problem, we

presentClassBench, a suite of tools for benchmarking packet classification algorithms and devices.

6.1 Motivation

Deployment of next generation network services hinges on the ability of Internetinfrastructure

to provide flow identification at physical link speeds. A packet classifier must compare header

fields of every incoming packet against a set of filters in order to identify a flow. The resulting flow

identifier is used to apply security policies, application processing, and quality-of-service guarantees

to packets belonging to the specified flow. Typical packet classification filter sets havefewer than

a thousand filters and reside in enterprise firewalls or edge routers. As network services and packet

classifiers continue to migrate into the network core, it is anticipated that filter sets could swell

to tens of thousands of filters or more. A more complete introduction to packet classification is

provided in Chapter 1. The most common type of multiple field packet classification examines

123

only the packet header fields comprising the 5-tuple, possibly due to the lack of fastand efficient

solutions that scale with the number of search fields. As we discuss in Section 5.8, packet filters

often examine fields beyond the standard IP 5-tuple and we anticipate that filter sets will continue

to scale to larger numbers of fields. For this reason, we designedClassBenchwith the capability

of generating additional filter fields such as TCP flags and ICMP type numbers. While this isan

important feature, the primary contribution of our work is the accurate modeling of thestructure of

the filter fields comprising the standard IP 5-tuple.

As reported in Chapter 5, it has been observed that real filter sets exhibit a considerable

amount of structure. In response, several algorithmic techniques have been developed which ex-

ploit filter set structure to accelerate search time or reduce storage requirements [50, 51, 54, 58].

Consequently, the performance of these approaches are subject to the structure or statistical char-

acteristics of the filter set. A more complete survey of multi-dimensional search algorithms and

devices is provided in Chapter 4. As discussed in Section 4.2.2 and Section 5.3.3, the capacity

and efficiency of the most prominent packet classification solution, Ternary Content Addressable

Memories (TCAMs), is also subject to the characteristics of the filter set.

Despite the influence of filter set composition on the performance of packet classification

search techniques and devices, no publicly available benchmarking tools, filter sets,or formal

methodology exists for standardized performance evaluation. Due to security and confidentiality

issues, access to large, real filter sets for analysis and performance measurements of new classifi-

cation techniques has been limited to a small subset of the research community. Someresearchers

in academia have gained access to filter sets through confidentiality agreements, butare unable to

distribute those filter sets. Furthermore, performance evaluations using real filter sets are restricted

by the size and structure of the sample filter sets. Some researchers have proposed ad hoc methods,

such as independently selecting address prefixes from backbone route tables, to construct synthetic

filter sets or modify their composition. A survey of related work is provided in Section 6.2.

In order to facilitate future research and provide a foundation for a meaningful benchmark,

we presentClassBench, a publicly available suite of tools for benchmarking packet classification

algorithms and devices. As shown in Figure 6.1,ClassBenchconsists of three tools: aFilter Set

Analyzer, Filter Set Generator, andTrace Generator. The general approach ofClassBenchis to

construct a set of benchmarkparameter filesthat specify the relevant characteristics of real filter sets,

generate a synthetic filter set from a chosenparameter fileand a small set of high-level inputs, and

also provide the option to generate a sequence of packet headers to probe the synthetic filter set using

the Trace Generator. Parameter filescontain various statistics and probability distributions that

guide the generation of synthetic filter sets. TheFilter Setanalyzer tool extracts relevant statistics

from a seed filter set, constructs probability distributions to guide the generation of synthetic filter

sets, and generates aparameter file. This provides the capability to generate large synthetic filter

sets which model the structure of a seed filter set. In Section 6.3 we discuss the statistics and

probability distributions contained in theparameter filesthat drive the synthetic filter generation

124

Filter Set
Analyzer

Seed
Filter Set

Filter Set
Parameter

File
(Seed)

Filter Set
Parameter

File
(Seed)

Filter Set
Parameter

File
(Seed)

Filter Set
Parameter

File
(acl1)

Set of Benchmark
Parameter Files

size smoothing scope
Filter Set Generator

Synthetic
Filter
Set

Trace Generator
Input

Header
Trace

scale locality

Figure 6.1: Block diagram of theClassBenchtools suite. The syntheticFilter Set Generatorhas
size, smoothing, and scope adjustments which provide high-level, systematic mechanisms for alter-
ing the size and composition of synthetic filter sets. The set of benchmarkparameter filesmodel
real filter sets and may be refined over time. TheTrace Generatorprovides adjustments for trace
size and locality of reference.

process. Selection of the relevant statistics and distributions is based on our study of 12 real filter

sets presented in Chapter 5, and several iterations of theFilter Set Generatordesign. Note that

parameter filesmay also be hand-constructed from qualitative characterizations of a specific filter

set or class of filter sets such as backbone routers, edge routers, etc. We envision a setof benchmark

parameter filesthat may be refined or expanded over time as the tools enjoy broader use.

The Filter Set Generatortakes as input aparameter fileand a few high-level parameters.

Along with specifying filter set size, the tool provides mechanisms for systematically alteringthe

composition of filters. Two adjustments,smoothingandscope, provide high-level control over filter

set generation and an abstraction from the low-level statistics and distributions contained in the

parameter files. Thesmoothingadjustment provides a structured mechanism for introducing new

address aggregates which is useful for modeling filter sets significantly larger than the filter set used

to generate theparameter file. Thescopeadjustment provides a biasing mechanism to favor more

or less specific filters during the generation process. These adjustments and their affects onthe

resulting filter sets are discussed in Section 6.4.1 and Section 6.4.2. Finally, theTrace Generator

tool examines the synthetic filter set, then generates a sequence of packet headers to exercise the

filter set. Like theFilter Set Generator, the trace generator provides adjustments for scaling the

size of the trace as well as the locality of reference of headers in the trace. These adjustments are

described in detail in Section 6.5.

We highlight previous performance evaluation efforts by the research community aswell

as related benchmarking activity of the IETF in Section 6.2. It is our hope that this work initi-

ates a broader discussion which will lead to refinement of the tools, compilation of a standard set

of parameter files, and codification of a meaningful benchmark. Its value will depend on its per-

ceived clarity and usefulness to the interested community. In the case of packet classification, this

community is comprised of at least the following groups:

125

• Researchersseeking to evaluate new classification algorithms relative to alternative approaches

and commercial products.

• Classification product vendorsseeking to market their products with convincing performance

claims over competing products.

• Classification product customersseeking to verify and compare classification product perfor-

mance on a uniform scale. This group can be sub-divided into two major sub-groups: router

vendors seeking to compare competing classification products during the design process and

prior to selecting components, and router customers seeking to independently verify perfor-

mance claims of router vendors based on the components used in the router.

6.2 Related Work

Extensive work has been done in developing benchmarks for many applications and data processing

devices. Benchmarks are used extensively in the field of computer architecture to evaluate micro-

processor performance. The effectiveness of these benchmarks to accurately distinguish the effects

of architectural improvements, fabrication advances, and compiler optimizationsis debatable; yet,

there exists inherent value in providing a uniform scale for comparison.

In the field of computer communications, the Internet Engineering Task Force (IETF) has

several working groups exploring network performance measurement. Specifically, the IP Perfor-

mance Metrics (IPPM) working group was formed with the purpose of developing standard metrics

for Internet data delivery [95]. The Benchmarking Methodology Working Group (BMWG) seeks

to make measurement recommendations for various internetworking technologies[96][97]. These

recommendations address metrics and performance characteristics as well as collection methodolo-

gies.

The BMWG specifically attacked the problem of measuring the performance of Forwarding

Information Base (FIB) routers [98][99]. Realizing that router throughput, latency, and frame loss

rate depend on the structure of the Forwarding Information Base (FIB) or route table, the BMWG

prescribes a testing methodology with accompanying terminology. The recommendations describe

testing at the router level, compounding the effects of system interfaces, control, and switching

fabric. While the suggested tests take into consideration table size and prefix distribution, they

lack specificity in how prefix distributions should be varied. The recommendations do introduce

a methodology for determining the maximum FIB size and evaluating throughput relative to the

table size. The BMWG also produced a methodology for benchmarking firewalls [100][101]. The

methodology contains broad specifications such as: the firewall should contain at least one rule

for each host, tests should be run with various filter set sizes, and test traffic should correspond to

rules at the “end” of the filter set. This final specification provides for more accurate performance

126

assessment of firewalls employing simple linear search algorithms. We assert thatClassBenchcom-

plements efforts by the IETF by providing the necessary tools for generating test vectors with high-

level control over filter set and input trace composition. The Network Processor Forum(NPF) has

also initiated a benchmarking effort [102]. Currently, the NPF has produced benchmarks for switch

fabrics and route lookup engines. To our knowledge, there are no current efforts by the IETF or the

NPF to provide a benchmark for multiple field filter matching.

In the absence of publicly available packet filter sets, researchers have exerted much effort in

order to generate realistic performance tests for new algorithms. Several research groups obtained

access to real filter sets through confidentiality agreements. Gupta and McKeown obtained access

to 40 real filter sets and extracted a number of useful statistics which have been widelycited [50].

Gupta and McKeown also generated synthetic two-dimensional filter sets consisting of source-

destination address prefix pairs by randomly selecting address prefixes from publicly available route

tables [51]. This technique was also employed by Feldman and Muthukrishnan [27]. Warkhede,

Suri, and Varghese used this technique in a study of packet classification for two-dimensional

“conflict-free” filters [68]. Baboescu and Varghese also generated synthetic two-dimensional fil-

ter sets by randomly selecting prefixes from publicly available route tables, but added refinements

for controlling the number of zero-length prefixes (wildcards) and prefix nesting [54, 103]. A sim-

ple technique for appending randomly selected port ranges and protocols from real filter sets in

order to generate synthetic five-dimensional filter sets is also described [54]. Baboescu and Vargh-

ese also introduced a simple scheme for using a sample filter set to generate a larger synthetic

five-dimensional filter set [58]. This technique replicates filters by changing the IP prefixes while

keeping the other fields unchanged. While these techniques address some aspects of scaling filter

sets in size, they lack high-level mechanisms for adjusting filter set composition which is crucial for

evaluating algorithms that exploit filter set characteristics.

Woo provided strong motivation for a packet classification benchmark and initiated theef-

fort by providing an overview of filter characteristics for different environments (ISP Peering Router,

ISP Core Router, Enterprise Edge Router, etc.) [29]. Based on high-level characteristics,Woo gen-

erated large synthetic filter sets, but provided few details about how the filter sets were constructed.

The technique also does not provide controls for varying the composition of filters withinthe filter

set. Nonetheless, his efforts provide a good starting point for constructing a benchmarkcapable of

modeling various application environments for packet classification. Sahasranamanand Buddhikot

used the characteristics compiled by Woo in a comparative evaluation of a few packet classification

techniques [104].

6.3 Parameter Files

Our technique for generating synthetic filter sets with five or more fields addresses the issueof

providing high-level control over the composition of synthetic filter sets and providesa more flexible

127

foundation for a packet classification benchmark. Our technique uses real filter setsto generate

parameter fileswhich guide theFilter Set Generatorand provide sufficient anonymity of addresses

in the original filter set. We have generated a set of 12parameter fileswhich are publicly available

along with theClassBenchtools suite. There still exists a need for a large sample space of real

filter sets from various application environments in order to refine theparameter files. By reducing

confidentiality concerns, we seek to remove the significant access barriers to realistic test vectors

for researchers and promote the development of a meaningful benchmark.

Given a real filter set, theFilter Set Analyzergenerates aparameter filethat contains statis-

tics and probability distributions that allow theFilter Set Generatorto produce a synthetic filter set

that retains the relevant characteristics of the real filter set. We chose the statistics and distributions

to include in theparameter filebased on thorough analysis of 12 real filter sets and several itera-

tions of theFilter Set Generatordesign. Results of this analysis and a description of our metrics

are provided in Chapter 5. We discuss the entries in the parameter file below. Where possible, we

avoid discussing format details; interested readers and potential users ofClassBenchmay find a

discussion of parameter file format in the documentation provided with the tools.

Protocols The Filter Set Analyzergenerates a list of the unique protocol specifications and the

distribution of filters over those values. We report the protocol distributions from 12 real filter sets

and discuss observed trends in Section 5.3.1.

Port Pair Classes As we discussed in Section 5.3.3, we characterize the structure of source and

destination port range pairs by defining aPort Pair Class(PPC). TheFilter Set Analyzergenerates a

PPC distribution for each unique protocol specification in the filter set. This process can be thought

of as follows: sort the filters into sets by protocol specification; for each set compute the PPC

distribution and record it in theparameter file.

Flags For each unique protocol specification in the filter set, theFilter Set Analyzergenerates

a list of unique flag specifications and a distribution of filters over those values. As discussedin

Section 5.8, 10 out of the 12 filter sets that we studied contain matches on TCP flags or ICMP type

numbers.

Arbitrary Ranges As reported in Section 5.3.2, filter sets typically contain a small number of

unique arbitrary range specifications. TheFilter Set Analyzergenerates a list of unique arbitrary

range specifications and a distribution of filters over those values for both the source anddestination

port fields. Both distributions are recorded in theparameter file.

Exact Port Numbers As reported in Section 5.3.2, a significant number of filters specify exact

port numbers in the source and destination port fields. Like the arbitrary range distributions, the

128

0
16

32
32

16

0

0

50

100

150

200

250

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40 48 56 64

0

1.0

32

1.0

0

0.2

0.4

0 8 16 24 32

DA Length

SA Length

Prefix Pair Length Distribution
Total Prefix Length Distribution

Source Prefix Length Distributions

Figure 6.2:Parameter filesrepresent prefix pair length distributions using a combination of a total
prefix length distribution and source prefix length distributions for each non-zero total length.

Filter Set Analyzergenerates a list of unique exact port specifications and a distribution of filters

over those values for both the source and destination port fields. Both distributions are recorded in

theparameter file.

Address Prefix Pair Lengths In Section 5.4 we demonstrated the importance of considering the

prefix pair length as opposed to independent distributions for the source and destination address

prefix lengths.Parameter filesrepresent prefix pair length distributions using a combination of a

total prefix length distribution and source prefix length distributions for each specified total length1

as shown in Figure 6.2. The total prefix length is simply the sum of the prefix lengths for the source

and destination address prefixes. As we will demonstrate in Section 6.4.2, modeling thetotal prefix

length distribution allows us to easily bias the generation of more or less specific filters based on the

scopeinput parameter. The source prefix length distributions associated with each specified total

length allow us to model the prefix pair length distribution, as the destination prefix length issimply

the difference of the total length and the source length.

Address Prefix Branching and Skew The branching probability and skew distributions defined

in Section 5.4 allow us to model the address space coverage and relationships between address

1We do not need to store a source prefi x distribution for total prefi x lengths that are not specifi ed by fi lters in the fi lter
set.

129

prefixes specified in the filter set. TheFilter Set Analyzercomputes branching probability and skew

distributions for both source and destination address prefixes. Both distributions are recordedin the

parameter file.

Address Prefix Correlation The address correlation distribution defined in Section 5.4 speci-

fies the relationship between source and destination address prefixes in each filter. TheFilter Set

Analyzercomputes the address prefix correlation distribution and records it in theparameter file.

Prefix Nesting Thresholds As discussed in Section 5.7, the number of unique address prefixes

that match a given packet is an important property of real filter sets and is often referred to as

prefix nesting. We found that if theFilter Set Generatoris ignorant of this property, it is likely

to create filter sets with significantly higher prefix nesting, especially when the synthetic filter set

is larger than the filter set used to generate theparameter file. Given that prefix nesting remains

relatively constant for filter sets of various sizes, we place a limit on the prefix nesting during

the filter generation process. TheFilter Set Analyzercomputes the maximum prefix nesting for

both the source and destination address prefixes in the filter set and records these statistics in the

parameter file. TheFilter Set Generatorretains these prefix nesting properties in the synthetic filter

set, regardless of size. We discuss the process of generating address prefixes and retaining prefix

nesting properties in Section 6.4.

Scale TheFilter Set Analyzeralso records the size of the real filter set in the generatedparameter

file. This statistic primarily serves as a reference point to users when selecting parameter files to use

to test a particular device or algorithm. It is also used when the user chooses to scale thesource and

destination address branching probability and skew distributions with filter set size. This optionis

provided via a high-level command switch to theFilter Set Generator. For example, if a parameter

file from a firewall filter set of 100 filters is used to generate a synthetic filter set of 10000 filters the

user may want to allow the source and destination addresses to cover more of the IP address space

while retaining the prefix nesting and prefix pair length distributions.

6.4 Synthetic Filter Set Generation

TheFilter Set Generatoris the cornerstone of theClassBenchtools suite. Perhaps the most succinct

way to describe the synthetic filter set generation process is to walk through the pseudocode shown

in Figure 6.3. The first step in the filter generation process is to read the statistics and distributions

from theparameter file. Rather then list all of the distributions here, we will discuss them when

they are used in the process. Next, we get the four high-level input parameters:

• size: target size for the synthetic filter set

• smoothing: controls the number of new address aggregates (prefix lengths)

130

• port scope: biases the tool to generate more or less specific port range pairs

• address scope: biases the tool to generate more or less specific address prefix pairs

We refer to thesizeparameter as a “target” size because the generated filter set may have fewer

filters. This is due to the fact that it is possible for theFilter Set Generatorto produce a filter set

containing redundant filters, thus the final step in the process removes the redundantfilters. The

generation of redundant filters stems from the way the tool assigns source and destinationaddress

prefixes that preserve the properties specified in theparameter file. This process will be described

in more detail in a moment.

Before we begin the generation process, we apply thesmoothingadjustment to the prefix

pair length distributions2(lines 6 through 10). This adjustment provides a systematic, high-level

mechanism for injecting new prefix lengths into the filter set while retaining the general characteris-

tics specified in theparameter file. We discuss this adjustment and its effects on the generated filter

set in Section 6.4.1. Theparameter filespecifies a prefix pair length distribution for each Port Pair

Class. As described in Section 6.3, theparameter filerepresents each prefix pair length distribution

as a total prefix length distribution with a source prefix length distribution for each specified total

length. In order to apply thesmoothingadjustment, we must iterate over all Port Pair Classes (line

7), apply the adjustment to each total prefix length distribution (line 8) and iterate over alltotal

prefix lengths (line 9), and apply the adjustment to each source prefix length distribution associated

with the total prefix length (line 10).

Prior to generating filters, we allocate a temporary array (line 11). The next set of steps

(lines 12 through 27) generate apartial filter for each entry in theFilters array. Basically, we

assign all filter fields except the address prefix values. Note that the prefix lengths for both source

and destination addressare assigned. The reason for this approach will become clear when we

discuss the assignment of address prefix values in a moment. The first step in generating apartial

filter is to select a protocol from theProtocols distribution specified by theparameter file(line

14). Note that this selection is performed with a uniform random variable,rv (line 13). We chose to

select the protocol first because we found that the protocol specification dictates the structure of the

other filter fields. Next, we select the protocol flags from theFlags distribution associated with the

chosen protocol (line 16). TheFlags distributions for all protocol specifications are given by the

parameter file. Note that the protocol flags field is typically the wildcard unless the chosen protocol

is TCP or ICMP. This selection is also performed with a uniform random variable (line 15).

After choosing the protocol and flags, we select a Port Pair Class,PPC, from the Port Pair

Class matrix,PPCMatrix , associated with the chosen protocol (line 18). As discussed in Sec-

tion 5.3.3, Port Pair Classes specify the type of port range specified by the source anddestination

port fields (wildcard, arbitrary range, etc.). Note that the selection of thePPCis performed with a

random variable that is biased by theport scopeparameter (line 17). This adjustment allows the user

2Note that thescopeadjustments do not add any new prefi x lengths to the distributions. It only changes the likelihood
that longer or shorter prefi x lengths in the distribution are chosen.

131

FilterSetGenerator ()
// Read input file and parameters

1 read (parameter file)
2 get (size)
3 get (smoothing)
4 get (port scope)
5 get (address scope)

// Apply smoothing to prefix pair length distributions
6 If smoothing> 0
7 For i : 1 to MaxPortPairClass
8 TotalLengths[i] →smooth (smoothing)
9 For j : 0 to 64
10 SALengths[i][j] →smooth (smoothing)

// Allocate temporary filter array
11 FilterType Filters [size]

// Generate filters
12 For i : 1 to size

// Choose an application specification
13 rv = Random()
14 Filters[i].Prot = Protocols →choose(rv)
15 rv = Random()
16 Filters[i].Flags = Flags[Filters[i].Prot] →choose(rv)
17 rv = RandomBias (port scope)
18 PPC = PPCMatrix[Filters[i].Prot] →choose(rv)
19 rv = Random()
20 Filters[i].SP = SrcPorts[PPC.SPClass] →choose(rv)
21 rv = Random()
22 Filters[i].DP = DstPorts[PPC.DPClass] →choose(rv)

// Choose an address prefix length pair
23 rv = RandomBias (address scope)
24 TotalLength = TotalLengths[PPC] →choose(rv)
25 rv = Random()
26 Filters[i].SALength = SrcLengths[PPC][TotalLength] →choose(rv)
27 Filters[i].DALength = TotalLength - Filters[i].SALength

// Assign address prefix pairs
28 AssignSA(Filters)
29 AssignDA(Filters)

// Remove redundant filters and prevent filter nesting
30 RemoveRedundantFilters(Filters)
31 OrderNestedFilters(Filters)
32 PrintFilters(Filters)

Figure 6.3: Pseudocode forFilter Set Generator.

132

to bias theFilter Set Generatorto produce a filter set with more or less specific Port Pair Classes

where WC-WC (both port ranges wildcarded) is the least specific and EM-EM (both port ranges

specify an exact match port number) is the most specific. We discuss this adjustment and its effects

on the generated filter set in Section 6.4.2. Given the Port Pair Class, we can select the source and

destination port ranges from their respective port range distributions associated with eachPort Class

(lines 20 and 22). Note that the distributions for Port Classes WC, HI, and LO are trivial as they

define single ranges; therefore, theparameter fileonly needs to specify arbitrary range (AR) and

exact match (EM) port number distributions for both the source and destination ports. The selection

of port ranges from a Port Class distribution is performed using a uniform random variable (lines

19 and 21).

Selecting the address prefix pair lengths is the last step in generating apartial filter. We

select a total prefix pair length from the distribution associated with the chosen Port Pair Class

(line 24) using a random variable biased by theaddress scopeparameter (line 23). We discuss this

adjustment and its effects on the generated filter set in Section 6.4.2. We select a source prefix

length from the distribution associated with the chosen Port Pair Class and total length (line 26)

using a uniform random variable (line 25). Note that we use an unbiased, uniform randomvariable

for choosing the source address length. This allows us to retain the relationships betweensource

and destination address prefix lengths. Finally, we calculate the destination address prefix length

using the chosen total length and source address prefix length (line 27).

After we generate all thepartial filters, we must assign the source and destination address

prefix values. We begin by assigning the source address prefix values (line 28). TheAssignSA

routine constructs a binary trie using the set of source address prefix lengths inFilters and the

source address branching probability and skew distributions specified by theparameter file. We start

by allocating a root node, constructing a list of filtersFilterList containing all the partial filters

in Filters , and passingFilterList and a node pointer to a recursive process,VisitNode .

This process first examines all of the entries inFilterList . If an entry has a source prefix length

equal to the level of the node3, it assigns the node’s address to the entry and removes the entry

from FilterList . Once completed,VisitNode recursively distributes the remaining filters

to child nodes according to the branching probability and skew for the node’s level. Note that we

also keep track of the number of prefixes that have been assigned along a path by passing aNest

variable to the recursive process. IfNest ≥ SANestThresh - 1 , whereSANestThresh is

the source prefix nesting threshold specified by theparameter file, thenVisitNode ignores the

branching probability and skew distributions. In this case,VisitNode partitionsFilterList

into two lists, one containing filters with source address prefix lengths equal to the next tree level,

and one containing all the remaining filters.VisitNode then recursively passes the lists to two

child nodes. In doing so, we ensure that the nesting threshold is not exceeded.

3Node level is synonymous with tree depth.

133

Assigning destination address prefix values is symmetric to the process for source address

prefixes with one extension. In order to preserve the relationship between source and destination

address prefixes in each filter, theAssignDA process (line 29) also considers the correlation dis-

tribution specified in theparameter file. In order to preserve the correlation,AssignDA employs

a two-phase process of constructing the destination address trie. The first phase recursively dis-

tributes filters according to the correlation distribution. When the address prefixes of a particular

filter cease to be correlated, it stores the filter in a temporaryStubList associated with the current

tree node. The second phase recursively walks down the tree and completes the assignment process

in the same manner as theAssignSA process, with the exception that theStubList is appended

to theFilterList passed to theAssignDA process prior to processing.

Note that we do not explicitly prevent theFilter Set Generatorfrom generating redundant

filters. Identicalpartial filters may be assigned the same source and destination address prefix

values by theAssignSA andAssignDA functions. In essence, this preserves the characteristics

specified by theparameter filebecause the number of unique filter field values allowed by the

various distributions is inherently limited. Consider the example of attempting to generatea large

filter set using aparameter filefrom a small filter set. If we are forced to generate the number of

filters specified by thesizeparameter, we face two unfavorable results: (1) the resulting filter set

may not model theparameter filebecause we are repeatedly forced to choose values from the tails

of the distributions in order to create unique filters, or (2) theFilter Set Generatornever terminates

because it has exhausted the distributions and cannot create any more unique filters.With the current

design of theFilter Set Generator, a user can produce a larger filter set by simply increasing thesize

target beyond the desired size. While this does introduce some variability in the size of the synthetic

filter set, we believe this is a tolerable trade-off to make for maintaining the characteristics inthe

parameter fileand achieving reasonable execution times for theFilter Set Generator.

Thus, after generating a list ofsizesynthetic filters, we remove any redundant filters from

the list via theRemoveRedundantFilters function (line 30). A näıve implementation of this

function would requireO(N 2) time, whereN is equal tosize. We discuss an efficient mechanism

for removing redundant filters from the set in Section 6.4.3. After removing redundant filters from

the filter set, we sort the filters in order of increasing scope (line 31). This allows the filter set

to be searched using a simple linear search technique, as nested filters will be searched inorder

of decreasing specificity. An efficient technique for performing this sorting step is also discussed

in Section 6.4.3. Finally, we print the filter set to an output file (line 32). The following subsec-

tions provide detailed descriptions and analyses of the smoothing and scope adjustments, as well as

efficient techniques for removing redundant filters and sorting the filters to prevent nesting.

6.4.1 Smoothing Adjustment

As filter sets scale in size, we anticipate that new address prefix pair lengths will emergedue to

network address aggregation and segregation. In order to model this behavior, we provide for the

134

0
5

10
15

20
25

30

32

28

24

20
16

12
8

4
0

0

10000

20000

30000

40000

50000

60000

70000
N

u
m

b
er

o
f

F
ilt

er
s

DA Prefix Length SA Prefix Length

(a)r = 0

0

4

8

12

16

20

24

28

32 32

28

24

20

16

12

8

4

00 100000

DA Prefix Length SA Prefix Length

(b) r = 0, top view

Figure 6.4: Prefix pair length distribution for a synthetic filter set of 64000 filters generated witha
parameter filespecifying 16-bit prefix lengths for all addresses.

introduction of new prefix lengths in a structured manner. Injecting purely random address prefix

pair lengths during the generation process neglects the structure of the filter set used to generate the

parameter file. Using scope as a measure of distance, we expect that new address aggregateswill

emerge “near” an existing address aggregate. Consider the address prefix pair length distribution

shown in Figure 6.4. In this example, all filters in the filter set have 16-bit source and destination

address prefixes; thus, the distribution is a single “spike”. When injecting new address prefixpair

lengths into the distribution, we would like them to be clustered around the existing spike in the

distribution. This structured approach translates “spikes” in the distribution into smoother “hills”;

hence, we refer to the process as smoothing.

In order to control the injection of new prefix lengths, we define asmoothingparameter

which limits the maximum radius of deviation from the original prefix pair length, where radius

is measured in the number of bits specified by the prefix pair. Geometrically, this measurement

may be viewed as the Manhattan distance from one prefix pair length to another. Forconvenience,

let thesmoothingparameter be equal tor. We chose to model the clustering using a symmetric

binomial distribution. Given the parameterr, a symmetric binomial distribution is defined on the

range[0 : 2r], and the probability at each pointi in the range is given by:

pi =

(

2r

i

)

(

1

2

)2r

(6.1)

Note thatr is the median point in the range with probabilitypr, andr may assume values in the

range[0 : 64].

135

Once we generate the symmetric binomial distribution from thesmoothingparameter, we

apply this distribution to each specified prefix pair length. The smoothing process involvesscaling

each “spike” in the distribution according to the median probabilitypr, and binomially distributing

the residue to the prefix pair lengths within ther-bit radius. When prefix lengths are at the “edges”

of the distribution, we simply truncate the binomial distribution. This requires us to normalize the

prefix pair length distribution as the last step in the smoothing process. Note that we must apply the

smoothing adjustment to each prefix pair length distribution associated with each Port Pair Class

in the parameter file. In order to demonstrate this process, we provide an example of smoothing

the prefix pair length distribution in Figure 6.4 using two different values ofr. Figure 6.5(a) and

Figure 6.5(b) show the prefix pair length distributions for a synthetic filter set generated with a

parameter filespecifying 16-bit prefix lengths for all addresses and a smoothing parameterr = 8.

With the exception of the fringe effects due to random number generation, the singlespike at 16-16

is binomially distributed to the prefix pair lengths within a Manhattan distance of 8. The same effect

is shown in Figure 6.5(a) and Figure 6.5(b) for a smoothing parameterr = 32.

In practice, we expect that thesmoothingparameter will be limited to at most 8. In order to

demonstrate the effect of smoothing in a realistic context, we generated a synthetic filter set using a

smoothingparameter of 4. Figure 6.6(a) and Figure 6.6(b) show the prefix pair length distribution

for a synthetic filter set of 64000 filters generated using the ipc1parameter fileand smoothing

parameterr = 0. Figure 6.6(c) and Figure 6.6(d) show the prefix pair length distribution for a

synthetic filter set of 64000 filters generated using the ipc1parameter fileand smoothing parameter

r = 4. Note that this synthetic filter set retains the structure of the original filter set while modeling

a realistic amount of address aggregation and segregation.

Recall that we choose to truncate and normalize to deal with the edge cases. As evident

in Figure 6.6, many of the most common address prefix pair lengths occur at the edges of the

distribution. As a result, applying the smoothing adjustment may affect the average scope of the

generated filter set. Consider the case of the spike at 32-32 (fully specified source and destination

addresses). Applying the smoothing adjustment to this point distributes some of the residue toless

specific prefix pair lengths, but the residue allocated to more specific prefix pair lengths is truncated

as there are not any more specific prefix pair lengths. In order to assess the effects of truncation and

normalization on the resulting filter sets, we generated several filter sets of the same size using three

differentparameter filesand various values of the smoothing parameter. The results are shown in

Figure 6.4.1. Note that as we increase the amount of smoothing applied to the prefixpair length

distributions, the effect on the 5-tuple scope and address pair scope is minimal. We observe a slight

drift toward the median scope value due to the aforementioned truncation of the distributions at the

edges.

136

0
5

10
15

20
25

30

32

28

24

20

16
12

8
4

0

0

500

1000

1500

2000

2500

3000

3500
N

u
m

b
er

o
f

F
ilt

er
s

DA Prefix Length SA Prefix Length

(a)r = 8

0

4

8

12

16

20

24

28

32 32

28

24

20

16

12

8

4

00 5000

DA Prefix Length SA Prefix Length

(b) r = 8, top view

0
5

10
15

20
25

30

32

28

24

20

16

12
8

4
00

100

200

300

400

500

600

700

800

900

N
u

m
b

er
o

f
F

ilt
er

s

DA Prefix Length SA Prefix Length

(c) r = 32

0

4

8

12

16

20

24

28

32 32

28

24

20

16

12

8

4

00 1000

DA Prefix Length SA Prefix Length

(d) r = 32, top view

Figure 6.5: Prefix pair length distributions for a synthetic filter set of 64000 filters generated with
a parameter filespecifying 16-bit prefix lengths for all addresses and various values of smoothing
parameterr.

6.4.2 Scope Adjustment

As filter sets scale in size and new applications emerge, it is likely that the average scope of the

filter set will change. As the number of flow-specific filters in a filter sets increases, the specificity

of the filter set increases and the average scope decreases. If the number of explicitly blocked ports

for all packets in a firewall filter set increases, then the specificity of the filter set may decrease and

the average scope may increase4. In order to explore the effect of filter scope on the performance

4We are assuming a common practice of specifying an exact match on the blocked port number and wildcards for all
other fi lter fi elds

137

0
5

10
15

20
25

30

32

28

24

20
16

12
8

4
0

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u

m
b

er
o

f
F

ilt
er

s

DA Prefix Length SA Prefix Length

(a)r = 0

0

4

8

12

16

20

24

28

32 32

28

24

20

16

12

8

4

00 20000

DA Prefix Length SA Prefix Length

(b) r = 0, top view

0
8

16
24

32

32

24

16
8

0
0

500

1000

1500

2000

2500

DA Prefix Length SA Prefix Length

(c) r = 4

0

8

16

24

32 32

24

16

8

00 5000

DA Prefix Length SA Prefix Length

(d) r = 4, top view

Figure 6.6: Prefix pair length distribution for a synthetic filter set of 64000 filters generated withthe
ipc1parameter filewith smoothing parametersr = 0 andr = 4.

of algorithms and packet classification devices, we provide high-level adjustments of the average

scope of the synthetic filter set. Two input parameters,address scopeandport scope, allow the user

to bias theFilter Set Generatorto create more or less specific address prefix pairs and port pairs,

respectively.

In order to illustrate the effects of scope adjustments, consider the standard method of sam-

pling from a distribution using a uniformly distributed random variable. In Figure 6.8, we show

the cumulative distribution for the total prefix pair length associated with the WC-WC port pair

class of the acl2 filter set. In order to sample from this distribution, theFilter Set Generatorselects

138

0

20

40

60

80

100

0 8 16 24 32 40 48 56 64

Smoothing Parameter (r)

5-
tu

p
le

S
co

p
e

acl1 fw5 ipc1

(a) 5-tuple Scope

0

10

20

30

40

50

60

0 8 16 24 32 40 48 56 64

Smoothing Parameter (r)

A
d

d
re

ss
P

ai
r

S
co

p
e

acl3 fw5 ipc1

(b) Address Prefi x Pair Scope

Figure 6.7: Average scope of synthetic filter sets consisting of 16000 filters generated withparame-
ter files extracted from filter setsacl3, fw5, andipc1, and various values of the smoothing parameter
r.

a random number between zero and one using a uniform random number generator, then chooses

the total prefix pair length covering that number in the cumulative distribution. Graphically, this

amounts to projecting a horizontal line from the random number on the y-axis. The x-coordinate

of the “step” which it intersects is the sampled total prefix pair length. In Figure 6.8, we shown an

example of sampling with a random variable equal to0.5 to choose the total prefix pair length of

44.

Theaddress scopeadjustment essentially biases the sampling process to select more or less

specific total prefix pair lengths. We can realize this in two ways: (1) apply the adjustmentto the

cumulative distribution, or (2) bias the random variable used to sample from the cumulative distribu-

tion. The first option requires that we recompute the cumulative density distribution to makelonger

or shorter prefix lengths more or less probable, as dictated by theaddress scopeparameter. The

second option provides a conceptually simpler alternative. Returning to the example in Figure 6.8,

if we want to bias theFilter Set Generatorto produce more specific address prefix pairs, then we

want the random variable used to sample from the distribution to be biased to values closer to1.

The reverse is true if we want less specific address prefix pairs. Thus, in order to apply the scope

adjustment we simply use a random number generator to choose a uniformly distributed random

variable,rvuni, apply a biasing function to generate a biased random variable,rvbias, and sample

from the cumulative distribution usingrvbias.

While there are many possible biasing functions, we limit ourselves to a particularly simple

class of functions. Our chosen biasing function may be viewed as applying a slope,s, to the uniform

distribution as shown in Figure 6.9(a). When the slopes = 0, the distribution is uniform. The biased

random variable corresponding to a uniform random variable on thex-axis is equal to the area of the

139

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40 48 56 64

Total Prefix Pair Length

C
u

m
m

u
la

ti
ve

D
en

si
ty

0.5

44

Figure 6.8: Example of sampling from a cumulative distribution using a random variable. Distribu-
tion is for the total prefix pair length associated with the WC-WC port pair class of the acl2 filter
set. A random variable equal to 0.5 chooses 44 as the total prefix pair length.

rectangle defined by the value and a line intersecting they-axis at one with a slope of zero. Thus, the

biased random variable is equal to the uniform random variable. As shown in Figure 6.9(a), we can

bias the random variable by altering the slope of the line. Note that in order for the biasing function

to be defined for random variables in the range[0 : 1] and have a cumulative probability of 1 for a

random variable equal to 1, the slope adjustment must be in the range[−2 : 2]. Graphically, this

results in the line pivoting about the point(0.5, 1). For convenience, we define the scope adjustments

to be in the range[−1 : 1], thus the slope is equal to two times the scope adjustment. For non-zero

slope values, the biased random variable corresponding to a uniform random variable onthex-axis

is equal to the area of the trapezoid5 defined by the value and a line intersecting the point(0.5, 1)

with a slope ofs. The expression for the biased random variable,rvbias, given a uniform random

variable,rvuni, and ascopeparameter in the range[−1 : 1] is:

rvbias = rvuni(scope× rvuni − scope + 1) (6.2)

Figure 6.9(b) shows a plot of the biasing function forscopevalues of 0, -1, and 1. We also provide

a graphical example of computing the biased random variable given a uniform random variable of

0.5 and ascopeparameter of 1. In this case thervbias is 0.25. Let us return to the example of

choosing the total address prefix length from the cumulative distribution. In Figure 6.10, we show

examples of sampling the distribution using the unbiased uniform random variable,rvuni = 0.5,

5Recall that the area of a trapezoid is one half the product of the height and the sum of the lengths of the parallel
edges,A = 1

2
× h× (l1 + l2).

140

1

10 0.5

0.5

s = 0

1

10 0.5

s = 1

0.25

1

10 0.5

s = -1

0.75

Uniform RV Uniform RV Uniform RV

(a) Biased random variable is defi ned by area under line with
slopes = 2× scope.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Biased Random Variable

U
n

if
o

rm
R

an
d

o
m

V
ar

ia
b

le

scope= -1

scope= 1

scope= 0
0.5

0.25

(b) Plot of scope biasing function.

Figure 6.9: Scope applies a biasing function to a uniform random variable.

and the biased random variable,rvbias = 0.25, resulting from applying the biasing function with

scope = 1. Note that the biasing results in the selection of a less specific address prefix pair, a total

length of 35 as opposed to 44.

Positive values ofaddress scopebias theFilter Set Generatorto choose less specific address

prefix pairs, thus increasing the average scope of the filter set. Likewise, negative values ofaddress

scopebias theFilter Set Generatorto choose more specific address prefix pairs, thus decreasing the

average scope of the filter set. The same effects are realized by theport scopeadjustment by biasing

the Filter Set Generatorto select more or less specific port range pairs. Note that the cumulative

distribution must be constructed in such a way that the distribution is computed over values sorted

from least specific to most specific.

141

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40 48 56 64

Total Prefix Pair Length

C
u

m
m

u
la

ti
ve

D
en

si
ty

rv(bias) = 0.25

35

rv(uni) = 0.5

44

Figure 6.10: Example of sampling from a cumulative distribution using a random variable.Distri-
bution is for the total prefix pair length associated with the WC-WC port pair class of the acl2 filter
set. A random variable equal to 0.5 chooses 44 as the total prefix pair length.

Finally, we report the results of tests assessing the effects of theaddress scopeandport

scopeparameters on the synthetic filter sets generated by theFilter Set Generator. Each data point

in the plots in Figure 6.4.2 is from a synthetic filter set containing 16000 filters generated froma

parameter filefrom filter sets acl3, fw5, or ipc1. Figure 6.11(a) shows the effect of theaddress scope

parameter on the average scope of the address prefix pairs in the resulting filter set. Overits range of

values, theaddress scopealters the average address pair scope by±4 to±6. Figure 6.11(b) shows

the effect of theport scopeparameter on the average scope of the port range pairs in the resulting

filter set. Over its range of values, theport scopealters the average port pair scope by±1.5 to

±2.5. Note that the magnitude of change in average scope for both parameters is approximately the

same relative to the range of possible scope values. Figure 6.11(c) shows the effect of both scope

parameters on the average scope of the filters in the resulting filter set. For these tests, both scope

parameters were set to the same value. Over their range of values, the scope parameters alter the

average filter scope by±6 to ±7.5. We assert that these scope adjustments provide a convenient

high-level mechanism for exploring the effects of filter specificity on the performance of packet

classification algorithms and devices.

6.4.3 Filter Redundancy & Priority

The final steps in synthetic filter set generation are removing redundant filters and orderingthe

remaining filters in order of increasing scope. The removal of redundant filters may berealized by

simply comparing each filter against all other filters in the set; however, this naı̈ve implementation

142

0

10

20

30

40

50

60

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Address Scope Parameter

A
d

d
re

ss
P

ai
r

S
co

p
e

acl3 fw5 ipc1

(a) Effect ofaddress scopeadjustment on the ad-
dress prefi x pair scope

0

5

10

15

20

25

30

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Port Scope Parameter

P
o

rt
P

ai
r

S
co

p
e

acl3 fw5 ipc1

(b) Effect ofport scopeadjustment on the port pair
scope

0

20

40

60

80

100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Address & Port Scope Parameters

5-
tu

p
le

S
co

p
e

acl3 fw5 ipc1

(c) 5-d Scope

Figure 6.11: Average scope of synthetic filter sets consisting of 16000 filters generated with param-
eter files extracted from filter setsacl3, fw5, andipc1, and various values of the scope parameters.

requiresO(N2) time, whereN is equal tosize. Such an approach makes execution times of the

Filter Set Generatorprohibitively long for filter sets in excess of a few thousand filters. In order to

accelerate this process, we first sort the filters into sets according to their tuple specification. Sorting

filters into tuple sets was introduced by Srinivasan, et. al. in the context of theTuple Space Search

packet classification algorithm discussed in Section 4.5 [66].

We perform this sorting efficiently by constructing a binary search tree of tuple set pointers,

using the scope of the tuple as the key for the node. When adding a filter to a tuple set,we search

the set for redundant filters. If no redundant filters exist in the set, then we add the filter to the

set. If a redundant filter exists in the set, we discard the filter. The time complexity of this search

technique depends on the number of tuples created by filters in the filter set and thedistribution of

filters across the tuples. In practice, we find that this technique provides acceptable performance.

143

Generating a synthetic filter set of 10k filters requires approximately five seconds, while afilter set

of 100k filters requires approximately five minutes with a Sun Ultra 10 workstation.

In order to support the traditional linear search technique, filter priority is often inferred by

placement in an ordered list. In such cases, the first matching filter is the best matching filter.This

arrangement could obviate a filterfi if a less specific filterfj ⊃ fi occupies a higher position in the

list. To prevent this, we order the filters in the synthetic filter set according to scope, where filters

with minimum scope occur first. The binary search tree of tuple set pointers makes this ordering

task simple. Recall that we use scope as the node key. Thus, we simply perform an in-order walk of

the binary search tree, appending the filters in each tuple set to the output list of filters.

6.5 Trace Generation

When benchmarking a particular packet classification algorithm or device, many of the metrics of

interest such as storage efficiency and maximum decision tree depth may be garneredusing the

synthetic filter sets generated by theFilter Set Generator. In order to evaluate the throughput of

techniques employing caching or the power consumption of various devicesunder load, we must

exercise the algorithm or device using a sequence of synthetic packet headers. TheTrace Generator

produces a list of synthetic packet headers that probe filters in a given filter set. Notethat we do

not want to generate random packet headers. Rather, we want to ensure thata packet header is

covered by at least one filter in theFilterSet in order to exercise the packet classifier and avoid

default filter matches. We experimented with a number of techniques to generatesynthetic headers.

One possibility is to compute all thed-dimensional polyhedra defined by the intersections of the

filters in the filter set, then choose a point in thed-dimensional space covered by the polyhedra. The

point defines a packet header. The best-matching filter for the packet headeris simply the highest

priority filter associated with the polyhedra. If we generate at least one header corresponding to each

polyhedra, we fully exercise the filter set. The number of polyhedra defined by filter intersections

grows exponentially, and thus fully exercising the filter set quickly becomes intractable. As a result,

we chose a method that partially exercises the filter set and allows the user to vary the sizeand

composition of the headers in the trace using high-level input parameters. These parameters control

the scale of the header trace relative to the filter set, as well as the locality of referencein the

sequence of headers. As we did with theFilter Set Generator, we discuss theTrace Generator

using the pseudocode shown in Figure 6.12.

We begin by reading theFilterSetfrom an input file (line 1). Next, we get the input param-

etersscale, ParetoA, andParetoB(lines 2 through 4). Thescaleparameter is used to set a threshold

for the size of the list of headers relative to the size of theFilterSet(line 5). In this context,scale

specifies the ratio of the number of headers in the trace to the number of filters in the filterset.

After computing theThreshold , we allocate a list of headers,Headers (line 6). The next set

144

TraceGenerator ()
// Generate list of synthetic packet headers

1 read (FilterSet)
2 get (scale)
3 get (ParetoA)
4 get (ParetoB)
5 Threshold = scale× size (FilterSet)
6 HeaderList Headers()
7 While size(Headers) < Threshold
8 RandFilt = randint (0,size (FilterSet))
9 NewHeader = RandomCorner (RandFilt, FilterSet)
10 Copies = Pareto (ParetoA,ParetoB)
11 For i : 1 to Copies
12 Headers →append(NewHeader)
13 Headers →print

Figure 6.12: Pseudocode forTrace Generator.

of steps continue to generate synthetic headers as long as the size ofHeaders does not exceed the

Threshold .

Each iteration of the header generation loop begins by selecting a random filter in theFilter-

Set(line 8). Next, we must choose a packet header covered by the filter. In the interestof exercising

priority resolution mechanisms and providing conservative performance estimates for algorithms

relying on filter overlap properties, we would like to choose headers matching a large number of

filters. In the course of our analyses, we found the number of overlapping filters is largefor packet

headers representing the “corners” of filters. When we view a filter as defining ad-dimensional rect-

angle, the corners of this rectangle represent points in thed-dimensional space which correspond to

packet headers. Each field of a filter covers a range of values. Choosing a packet header correspond-

ing to a “corner” translates to choosing a value for each header field from one of the extrema of the

range specified by each filter field. TheRandomCorner function chooses a random “corner” of

the filter identified byRandFilt and stores the header inNewHeader .

The last steps in the header generation loop append a variable number of copiesof NewHeader

to the trace. The number of copies,Copies , is chosen by sampling from a Pareto distribution con-

trolled by the input parameters,ParetoAandParetoB(line 10). In doing so, we provide a simple

control point for the locality of reference in the header trace. The Pareto distribution6 is one of the

heavy-tailed distributions commonly used to model the burst size of Internet traffic flows as well as

the file size distribution for traffic using the TCP protocol [105]. For convenience, leta = ParetoA

andb = ParetoB. The probability density function for the Pareto distribution may be expressed

6The Pareto distribution, a power law distribution named after the Italian economist Vilfredo Pareto, is also known as
the Bradford distribution.

145

as:

P (x) =
aba

xa+1
(6.3)

where the cumulative distribution is:

D(x) = 1−

(

b

x

)a

(6.4)

The Pareto distribution has a mean of:

µ =
ab

a− 1
(6.5)

Expressed in this way,a is typically called the shape parameter andb is typically called the scale

parameter, as the distribution is defined on values in the interval(b,∞). The following are some

examples of how the Pareto parameters are used to control locality of reference:

• Low locality of reference, short tail: (a = 10, b = 1) most headers will be inserted once

• Low locality of reference, long tail: (a = 1, b = 1) many headers will be inserted once, but

some could be inserted over 20 times

• High locality of reference, short tail: (a = 10, b = 4) most headers will be inserted four times

Once the size of the trace exceeds the threshold, the header generation loop terminates. Note that

a large burst near the end of the process will cause the trace to be larger thanThreshold . After

generating the list of headers, we write the trace to an output file (line 13).

6.6 Benchmarking with ClassBench

In order to provide value to the interested community, a packet classification benchmark must pro-

vide meaningful measurements that cover the broad spectrum of application environments. It is

with this in mind that we designed the suite ofClassBenchtools to be flexible while hiding the low-

level details of filter set structure. While it is unclear if real filter sets will vary as specified by the

smoothing and scope parameters, we assert that the tool provides a useful mechanismfor measuring

the effects of filter set composition on classifier performance. It is our hope thatClassBenchwill

enjoy broader use by researchers in need of realistic test vectors; it is also our intention toinitiate

and frame a broader discussion within the community that results in a larger set ofparameter files

that model real filter sets as well as the formulation of a standard benchmarking methodology.

Packet classification algorithms and devices range from purely conceptual, to softwareim-

plementations targeted to a variety of platforms, to state-of-the-art ASICs (Application Specific

Integrated Circuits). For the purpose of our discussion, we present a generic packet classifier model

as shown in Figure 6.13. In this model, the classifier consists of a search engine connected to mem-

ory which stores the filter set and any other data structures required for the search. For each packet

header passed to the classifier, the search engine queries the filter set and returns an associated flow

146
Database Updates

Database

Configuration Control

Input Stream
Packet Headers

Packet Classifier

Output Results
Flow IdentifiersSearch Engine

Figure 6.13: Generic model of a packet classifier.

identifier or set of flow identifiers. Note that the set of possible flow identifiers is application depen-

dent. Firewalls may only specify two types of flows, admissible and inadmissible, whereas routers

implementing per-flow queuing may specify thousands of unique flow identifiers. The configuration

control is used to specify parameters such as the number of matching flow identifiers to return and

the format of incoming packet headers. In order to model application environments where per-flow

filters are dynamically created and deleted, the model includes a mechanism for dynamic filter set

updates.

There are three primary metrics of interest for packet classification algorithms and devices:

lookup throughput, memory requirements, and power consumption. Update performance is also a

consideration, but secondary to the other three metrics. For packet classification devices or fixed

implementations of algorithms, throughput can be directly measured using a synthetic filter set and

associated header trace. Throughput measurements for software implementations ofalgorithms

are not as straight-forward. In this case, the metric most directly influencing throughput is the

required number ofsequentialmemory accesses. Using parallel and pipelined design techniques,

non-sequential memory accesses can be masked. A suitable benchmarking methodology should

report both the total and sequential memory accesses in terms of average, worst observed, and best

observed. The second metric of vital interest is the amount of memory required to store the filter set

and supplemental data structures. For classification techniques employing random access memory,

garnering memory usage metrics is straight-forward using a synthetic filter set. For TCAM-based

devices, memory usage can be measured in terms of storage efficiency, which is defined to be the

ratio of the number of required TCAM slots and the number of filters in the filter set. TheFilter

Set Generatorallows us to analyze the effect of filter set size, scope, and smoothness on throughput

and memory usage can be measured.

147

In the past, power consumption has not been a primary concern for those developing new

packet classification techniques. As discussed in Section 4.2.2, TCAM-based classifiers have be-

come the most popular solution for high performance routers, but they suffer from highpower con-

sumption. A typical TCAM consumes more than 100 times the power of state-of-the-art SRAMs

and can account for a large fraction of the power budget on a router interface card. Recent devel-

opments in TCAM technology provide for partitioning the device such that only a subset of the

available slots are activated at one time. IP lookup and packet classification techniques can take ad-

vantage of this capability to lower power consumption [106, 32]. The effect of filter set size, scope,

and smoothness on standard TCAMs and algorithms employing partitioning in order to lower power

consumption can be measured using theFilter Set Generator.

TheTrace Generatoris useful for evaluating algorithms and devices under realistic operat-

ing conditions. By providing control over the locality of reference in the sequence of packet header

queries, we also provide a convenient tool for measuring the performance of packet classifiers em-

ploying caching.

With the desire to refine theClassBenchtools suite and formalize a benchmarking method-

ology, we seek to initiate a broader discussion and solicit input from the community to helpguide

the remainder of this work. To facilitate this discussion, we make the tools publicly available at

the following site:http://www.arl.wustl.edu/˜det3/ClassBench/ . Input garnered

from the community will be used to refine the tools suite, assemble a standard set ofparameter files,

and formally specify a benchmarking methodology. While we have already foundClassBenchto be

very useful in our own research, it is our hope to promote its broader use in the research community.

148

Chapter 7

Scalable Packet Classifi cation using

Distributed Crossproducting of Field

Labels

Follow the path of the unsafe, independent thinker. Expose your ideas to the dangers of

controversy.

Thomas J. Watson, IBM

Due to the complexity of the search, packet classification is often a performance bottleneck in

network infrastructure; therefore, it has received much attention in the research community and a

wide variety of algorithms and devices exist in the research literature and commercial market. The

existing solutions explore various design tradeoffs to provide high search rates, power and space ef-

ficiency, fast incremental updates, and the ability to scale to large numbers of filters. There remains

a need for techniques that achieve a favorable balance among these tradeoffs and scale to support

classification on additional fields beyond the standard 5-tuple. We introduceDistributed Crosspro-

ducting of Field Labels(DCFL), a novel combination of new and existing packet classification

techniques that leverages key observations of the structure of real filter sets and takes advantage of

the capabilities of modern hardware technology. Using a collection of 12 real filter sets and the

ClassBenchtools suite, we provide analyses ofDCFL performance and resource requirements on

filter sets of various sizes and compositions in Section 7.7. Based on these results, we showthat

an optimized implementation ofDCFL can provide over 100 million searches per second and stor-

age for over 200 thousand filters with current generation hardware technology. In Section 7.8, we

discuss algorithms related to our approach and highlight the distinctions and advantages ofDCFL

relative to the state-of-the-art.

149

7.1 Description of DCFL

Distributed Crossproducting of Field Labels(DCFL) is a novel combination of new and existing

packet classification techniques that leverages key observations of filter set structureand takes ad-

vantage of the capabilities of modern hardware technology. We discuss the observed structure of

real filter sets in detail and provide motivation for packet classification on larger numbers of fields

in Chapter 5. Two key observations motivate our approach: the number of unique field values for a

given field in the filter set is small relative to the number of filters in the filter set, and the number of

unique field values matched by any packet is very small relative to the number of filters in the filter

set. We also draw from the encoding ideas highlighted in Section 4.2 in order to efficientlystore the

filter set and intermediate search results.

Using a high degree of parallelism,DCFL employs optimized search engines for each filter

field and an efficient technique for aggregating the results of each field search. By performing this

aggregation in a distributed fashion, we avoid the exponential increase in the time or space incurred

when performing this operation in a single step. Given that search techniques for singlepacket fields

are well-studied, the primary focus of this chapter is the development and analysis of an aggregation

mechanism that can make use of the embedded multi-port memory blocks in the current generation

of ASICs and FPGAs. We introduce several new concepts including field labeling,Meta-Labeling

unique field combinations,Field Splitting, and optimized data structures such asBloom Filter Arrays

that minimize the number of memory accesses to perform set membership queries. As aresult, our

technique provides fast lookup performance, efficient use of memory, supportfor dynamic updates

at high rates, and scalability to filters with additional fields.

DCFL may be described at a high-level using the following notation:

• Partition the filters in the filter set into fields

• Partition each packet header into corresponding fields

• Let Fi be the set of unique field values for filter fieldi that appear in one or more filters in the

filter set

• Let Fi(x) ⊆ Fi be the subset of filter field values inFi matched by a packet with the valuex

in header fieldi

• Let Fi,j be the set of unique filter field value pairs for fieldsi andj in the filter set; i.e. if

(u, v) ∈ Fi,j there is some filter or filters in the set withu in field i andv in field j

• Let Fi,j(x, y) ⊆ Fi,j be the subset of filter field value pairs inFi,j matched by a packet with

the valuex in header fieldi andy in header fieldj

• This can be extended to higher-order combinations, such as setFi,j,k and subsetFi,j,k(x, y, z),

etc.

150

The DCFL method can be structured in many different ways. In order to illustrate the lookup

process, assume that we are performing packet classification on four fields and a header arrives with

field values{w, x, y, z}. One possible configuration of aDCFL search is shown in Figure 7.1 and

proceeds as follows:

• In parallel, find subsetsF1(w), F2(x), F3(y), andF4(z)

• In parallel, find subsetsF1,2(w, x) andF3,4(y, z) as follows:

– Let Fquery(w, x) be the set of possible field value pairs formed from the crossproduct

of F1(w) andF2(x)

– For each field value pair inFquery(w, x), query for set membership inF1,2, if the field

value pair is in setF1,2 add it to setF1,2(w, x)

– Perform the symmetric operations to find subsetF3,4(y, z)

• Find subsetF1,2,3,4(w, x, y, z) by querying setF1,2,3,4 with the field value combinations

formed from the crossproduct ofF1,2(w, x) andF3,4(y, z)

• Select the highest priority exclusive filter andr highest priority non-exclusive filters in

F1,2,3,4(w, x, y, z)

Note that there are several variants which are not covered by this example. For instance, we could al-

ter the aggregation process to find the subsetF1,2,3(w, x, y) by queryingF1,2,3 using the crossprod-

uct of F1,2(w, x) andF3(y). We can then find the subsetF1,2,3,4(w, x, y, z) by queryingF1,2,3,4

using the crossproduct ofF1,2,3(w, x, y) andF4(z). A primary focus of this chapter is determining

subsets (F1,2(w, x), F3,4(y, z), etc.) via optimized set membership data structures.

As shown in Figure 7.1,DCFL employs three major components: a set of parallel search

engines, an aggregation network, and a priority resolution stage. Each search engineFi indepen-

dently searches for all filter fields matching the given header field using an algorithm or architecture

optimized for the type of search. For example, the search engines for the IP address fields may em-

ploy compressed multi-bit tries while the search engine for the protocol and flag fields use simple

hash tables. We provide a brief overview of options for performing the independentsearches on

packet fields in Section 7.5. As previously discussed in Chapter 5 and shown in Table5.9, each set

of matching labels for each header field is typically less than five for real filter tables.The sets of

matching labels generated by each search engine are fed to the aggregation network which computes

the set of all matching filters for the given packet in a multi-stage, distributed fashion. Finally, the

priority resolution stage selects the highest priority exclusive filter and ther highest priority non-

exclusive filters. The priority resolution stage may be realized by a number of efficient algorithms

and logic circuits; hence, we do not discuss it further.

The first key concept inDCFL is labeling unique field values with locally unique labels;

thus, sets of matching field values can be represented as sets of labels. Table 7.1 shows the sets of

151

Fquery(w,x,y,z)

F3,4(y,z)

Fquery(y,z)Fquery(w,x)

F1 F2 F3 F4

F1,2(w,x)

w x y z

Priority
Resolution

Best Matching Filter(s)

Packet Fields

Independent
Field Searches

Aggregation
Network

F1,2

F1(w) F2(x) F3(y) F4(z)

F3,4

F1,2,3,4

F1,2,3,4(w,x,y,z)

payload

Figure 7.1: Example configuration ofDistributed Crossproducting of Field Labels(DCFL); field
search engines operate in parallel and may be locally optimized; aggregation nodes also operate in
parallel; aggregation network may be constructed in a variety of ways.

unique source and destination addresses specified by the filters in Table 1.1. Note that each unique

field value also has an associated “count” value which records the number of filters which specify

the field value. The “count” value is used to support dynamic updates; a data structurein a field

search engine or aggregation node only needs to be updated when the “count” value changes from

0 to 1 or 1 to 0. We identify unique combinations of field values by assigning either (1)a composite

label formed by concatenating the labels for each field value in the combination, or (2) a newmeta-

label which uniquely identifies the combination in the set of unique combinations1. Meta-Labeling

essentially compresses the size of the label used to uniquely identify the field combination.In addi-

tion to reducing the memory requirements for explicitly storing composite labels, this optimization

has another subtle benefit.Meta-Labelingcompresses the space addressed by the label, thus the

1Meta-labeling can be thought of as simply numbering the set of unique fi eld combinations

152

Table 7.1: Sets of unique specifications for each field in the sample filter set.

SA Label Count
11010010 0 1
10011100 1 1
101101* 2 1
10011100 3 2
* 4 2
100111* 5 2
10010011 6 1
11101100 7 1
111010* 8 1
100110* 9 1
010110* 10 1
01110010 11 2

DA Label Count
* 0 7
001110* 1 1
01101010 2 2
011010* 3 2
01111010 4 1
01011000 5 1
11011000 6 2

PR Label Count
TCP 0 4
* 1 5
UDP 2 6
ICMP 3 1

DP Label Count
[3:15] 0 5
[1:1] 1 2
[0:15] 2 5
[5:5] 3 1
[6:6] 4 1
[0:1] 5 1
[3:3] 6 1

meta-labelmay be used as an index into a set membership data structure. The use of labels allows

us to use set membership data structures that only store labels corresponding to field valuesand

combinations of field values present in the filter table. While storage requirements depend on the

structure of the filter set, they scale linearly with the number of filters in the database. Furthermore,

at each aggregation node we need not perform set membership queries in any particular order. This

property allows us to take advantage of hardware parallelism and multi-port embedded memory

technology.

The second key concept inDCFL is employing a network of aggregation nodes to compute

the set of matching filters for a given packet. The aggregation network consists of a set of intercon-

nected aggregation nodes which perform set membership queries to the sets of unique field value

combinations,F1,2, F3,4,5, etc. By performing the aggregation in a multi-stage, distributed fashion,

the number of intermediate results operated on by each aggregation node remainssmall. Consider

the case of finding all matching address prefix pairs in the example filter set in Table 1.1for a packet

with address pair(x, y) = (10011100, 01101010). As shown in Figure 7.2, an aggregation node

takes as input the sets of matching field labels generated by the source and destination address search

153

FSA

x
10011100

FDA

y
01101010

FSA(x)
{1,4,5}

FDA(y)
{0,2,3}

Fquery(x,y)
(1,0) (1,2) (1,3)
(4,0) (4,2) (4,3)
(5,0) (5,2) (5,3)

Aggregation Node

FSA,DA(x,y)
{(1,0), (4,0), (5,3)}

FSA,DA
(0,0) (1,0) (2,1) (3,2)
(4,0) (5,3) (6,0) (7,4)

(8,5) (9,6) (10,6) (11,0)

Figure 7.2: Example aggregation node for source and destination address fields.

engines,FSA(x) andFDA(y), respectively. Searching the tables of unique field values shown in

Table 7.1,FSA(x) contains labels{1,4,5} andFDA(y) contains labels{0,2,3}. The first step is

to form a query setFquery of aggregate labels corresponding to potential address prefix pairs. The

query set is formed from the crossproduct of the source and destination address label sets.Next,

each label inFquery is checked for membership in the set of labels stored at the aggregation node,

FSA,DA. Note that the set of composite labels corresponds to unique address prefix pairs specified

by filters in the example filter set shown in Table 1.1. Composite labels contained in the set are

added to the matching label setFSA,DA(x, y) and passed to the next aggregation node. Since the

number of unique field values and field value combinations is limited in real filter sets, the size of

the crossproduct at each aggregation node remains manageable. By performingcrossproducting in

a distributed fashion across a network of aggregation nodes, we avoid an exponential increase in

search time that occurs when aggregating the results from all field search engines in a single step.

Note that the aggregation nodes only store unique combinations of fields present inthe filter table;

therefore, we also avoid the exponential blowup in memory requirements suffered bythe original

Crossproductingtechnique [53] andRecursive Flow Classification[50]. In Section 7.3, we intro-

duceField Splittingwhich limits the size ofFquery at aggregation nodes, even when the number

matching labels generated by field search engines increases.

DCFL is amenable to various implementation platforms, and where possible, we will high-

light the various configurations of the technique that are most suitable for the most popular plat-

forms. In order to illustrate the value of our approach, we focus on the highest performance option

for the remainder of this paper. It is important to briefly describe this intended implementation plat-

form here, as it will guide the selection of data structures for aggregation nodes and optimizations in

154

the following sections. Specifically, it is our goal to make full use of the high-degree ofparallelism

and numerous multi-port embedded memory blocks provided by the current generation of Applica-

tion Specific Integrated Circuit (ASIC) and Field-Programmable Gate Array (FPGA) technologies

discussed in Section 4.7. This requires that we maximize parallel computations and storage effi-

ciency. In Section 7.7 we show that an optimizedDCFL implementation can support hundreds of

thousands of filters in a current generation device without the need for external memory; however, a

limited number of high-performance off-chip memory devices such as Dual Data Rate (DDR) and

Quad Data Rate (QDR) SRAMs could be employed to support even larger filter sets.

7.2 Aggregation Network

Since all aggregation nodes operate in parallel, the performance bottleneck in the system is the

aggregation node with the largest worst-case query set size,|Fquery|. Query set size determines

the number of sequential memory accesses performed at the node. The size of query sets vary

for different constructions of the aggregation network. We refer to the worst-case queryset size,

|Fquery|, among all aggregation nodes,F1, . . . , F1,...,d, as the cost for network construction,Gi.

Selecting the most efficient arrangement of aggregation nodes into an aggregation network is a key

issue. We want to select the minimum cost aggregation networkGmin as follows:

Gmin = G : cost(G) = min {cost (Gi)∀i} (7.1)

where

cost (G) = max {|Fquery|∀F1, . . . , F1,...,d ∈ Gi} (7.2)

Consider an example for packet classification on three fields. Shown in Figure 7.3 are themaximum

sizes for the sets of matching field labels for the three fields and the maximum size for the sets of

matching labels for all possible field combinations. For example, label setF1,2(x, y) will contain at

most four labels for any values ofx andy. Also shown in Figure 7.3 are three possible aggregation

networks for aDCFL search; the cost varies between 3 and 6 depending on the construction.

In general, an aggregation node may operate on two or more input label sets. Given that we

seek to minimize|Fquery|, we limit the number of input label sets to two. The query set size for

aggregation nodes fed by field search engines is partly determined by the size of the matching field

label sets, which we have found to be small for real filter sets. Also, theField Splittingoptimization

provides a control point for the size of the query set at the aggregation nodes fedby the field search

engines; thus, we restrict the network structure by requiring that at least one of the inputsto each

aggregation node be a matching field label set from a field search engine. Figure 7.4 shows a

generic aggregation network for packet classification ond fields. Aggregation nodeF1,...,i operates

on matching field label setFi(x) and matching composite label setF1,...,i−1(a, . . . , w) generated by

upstream aggregation nodeF1,...,i−1. Note that the first aggregation node operates on label sets from

155

|F1(x)| ≤ 3 |F1,2(x,y)| ≤ 4 |F1,2,3(x,y,z)| ≤ 1
|F2(y)| ≤ 2 |F1,3(x,z)| ≤ 2
|F3(z)| ≤ 1 |F2,3(y,z)| ≤ 1

|F1,2,3(x,y,z)| = 1

F1

x

F1,2

F2

y

F3

z

F1,2,3

|F1,2(x,y)| = 4
|F3(z)| = 1|F1(x)| = 3

|Fquery(x,y)| = 6 |Fquery(x,y,z)| = 4

|F2(y)| = 2

G1

cost(G1) = 6

|F1,2,3(x,y,z)| = 1

F1

x

F1,2

F3

z

F2

y

F1,2,3

|F1,3(x,z)| = 2
|F2(y)| = 2|F1(x)| = 3

|Fquery(x,z)| = 3 |Fquery(x,y,z)| = 4

|F3(z)| = 1

G2

cost(G2) = 4

|F1,2,3(x,y,z)| = 1

F2

y

F1,2

F3

z

F1

x

F1,2,3

|F2,3(y,z)| = 1
|F1(x)| = 3|F2(y)| = 2

|Fquery(y,z)| = 2 |Fquery(x,y,z)| = 3

|F3(z)| = 1

G3

cost(G3) = 3

buffer

buffer

buffer

Figure 7.3: Example of variable aggregation network cost for different aggregationnetwork con-
structions for packet classification on three fields.

two field search engines,F1(a) andF2(b). We point out that this seemingly “serial” arrangement

of aggregation nodes does not preventDCFL from starting a new search on every pipeline cycle.

As shown in Figure 7.4, delay buffers allow field search engines to perform a new lookup on every

pipeline cycle. The matching field label sets are delayed by the appropriate numberof pipeline

cycles such that they arrive at the aggregation node synchronous to the matching label set from the

156

F1,…,d

F1

a

F1,2

F2

b

F3

c

Fd

z
Packet Fields

Parallel
Field Searches

Aggregation
Network

F1(a) F2(b)

F1,2,3

F1,2(a,b) F1,2,3(a,b,c) F1,…,d(a,…,z)

Priority
Resolution

Best Matching Filter(s)

F3(c) Fd(z)
delay buffer delay buffers

1,…,d-2

Figure 7.4: Generalized DCFL aggregation network for a search ond fields.

upstream aggregation node. Search engine results experience a maximum delay of(d− 2) pipeline

cycles which is tolerable given that the pipeline cycle time is on the order of 10ns.With such an

implementation,DCFL throughput is inversely proportional to the pipeline cycle time.

In this case, the problem is to choose the ordering of aggregation nodes which results inthe

minimum network cost. For example, do we first aggregate the source and destination field labels,

then aggregate the address pair labels with the protocol field labels? We can empiricallydetermine

the optimal arrangement of aggregation nodes for a given filter set by computing the maximum

query set size for each combination of field values in the filter set. While this computationis man-

ageable for real filter sets of moderate size, the computational complexity increasesexponentially

with filter set size. For our set of 12 real filter sets, the optimal network aggregated field labels in the

order of decreasing maximum matching filter label set size with few exceptions. This observation

can be used as a heuristic for constructing efficient aggregation networks for large filter sets and

filter sets with large numbers of filter fields. As previously discussed, we do not expect the filter set

properties leveraged byDCFL to change. We do point out that a static arrangement of aggregation

nodes might be subject to degraded performance if the filter set characteristics were dramatically

altered by a sequence of updates. Through the use of reconfigurable interconnectin the aggrega-

tion network and extra memory for storing off-line aggregation tables, aDCFL implementation can

minimize the time for restructuring the network for optimal performance. We defer this discussion

to future study.

7.3 Field Splitting

As discussed in Section 7.1, the size of the matching field label set,|Fi(x)|, affects the size of the

crossproduct,|Fquery|, at the following aggregation node. While we observe that|Fi(x)| remains

small for real filter sets, we would like to exert control over this value to both increase search speed

157

for existing filter sets and maintain search speed for filter sets with increased address prefix nesting

and port range overlaps. Recall that|Fi(x)| ≤ 2 for all exact match fields such as the transport

protocol and protocol flags.

The number of address prefixes matching a given address can be reduced bysplitting the

address prefixes into a set of(c + 1) shorter address prefixes, wherec is the number of splits. An

example of splitting a 6-bit address field is shown in Figure 7.5. For the original 6-bit address field,

A(5:0), the maximum number of field labels matching any address is five. In order to reduce this

number, we split the 6-bit address field into a 2-bit address field,A(5:4), and a 4-bit address field,

A(3:0). Each original 6-bit prefix creates one entry in each of the new prefix fields as shown.If

an original prefix is less than three bits in length, then the entry in fieldA(3:0) is the wildcard. We

assign a label to each of the unique prefixes in the new fields and create data structuresto search

the new fields in parallel in separate search engines. In this example we use binary trees; regardless

of the data structure, the search engine must return all matching prefixes. The prefixes originally

in A(5:0) are now identified by the unique combination of labels corresponding to their entries in

A(5:4)andA(3:0). For example, the prefix000∗ in A(5:0) is now identified by the label combination

(3, 1). A search proceeds by searchingA(5:4) andA(3:0) with the first two bits and remaining 4

bits of the packet address, respectively. Note that the maximum number of field labels returned

by the new search engines is three. We point out that the sets of matching labels from A(5:4)

andA(3:0) may be aggregated in any order, with label sets from any other filter field; we need not

aggregate the labels fromA(5:4)andA(3:0) in the same aggregation node to ensure correctness. For

address prefixes,Field Splitting is similar to constructing a variable-stride multi-bit trie; however,

with Field Splittingwe only store one multi-bit node per stride. A matching prefix is denoted by the

combination of matching prefixes from the multi-bit nodes in each stride.

Given that the size of the matching field label sets is the property that most directly affects

DCFL performance, we would like to specify a maximum set size and split those fields that exceed

the threshold. Given a field overlap threshold, there is a simple algorithm for determining the

number of splits required for an address prefix field. For a given address prefix field, we begin by

forming a list of all unique address prefixes in the filter set, sorted in non-decreasing order of prefix

length. We simply add each prefix in the list to a binary trie, keeping track of the numberof prefixes

encountered along the path using a nesting counter. If there is a split at the current prefix length, we

reset the nesting counter. The splits for the trie may be stored in a list or an array indexed bythe

prefix length. If the number of prefixes along the path reaches the threshold, we create a split at that

prefix length and reset the nesting counter. It is important to note that the number ofsplits depends

upon the structure of the address trie. In the worst case, a threshold of two overlaps couldcreate

a split at every prefix length. We argue that given the structure of real filter sets and reasonable

threshold values (four or five), thatField Splittingprovides a highly useful control point for the size

of query sets in aggregation nodes.

158

A(5:0)
*
0*
01*
000*
0110*
1010*
10100*
011010

Label
0
1
2
3
4
5
6
7

Label
0
0
0
1
2
2
3
4

A(5:4)
*
0*
01
00
01
10
10
01

Label
0
1
2
3
2
4
4
2

A(3:0)
*
*
*
0*
10*
10*
100*
1010

Figure 7.5: An example of splitting a 6-bit address field; maximum number of matching labels per
field is reduced from five to three.

Field Splitting for port ranges is much simpler. We simply compute the maximum field

overlap,m, for the given port field by adding the set of unique port ranges to a segment tree. Given

an overlap threshold,t, the number splits is simplyc = m−2
t−1 . We then create(c + 1) bins in which

to sort the set of unique port ranges. For each port range[i : j], we identify the bin,bi, containing

the minimum number of overlapping ranges using a segment tree constructed from theranges in the

bin. We insert[i : j] into bin bi and insert wildcards into the remaining bins. Once the sorting is

complete, we assign locally unique labels to the port ranges in each bin. Like addressfield splitting,

a range in the original filter field is now identified by a combination of labels corresponding to its

matching entry in each bin. Again, label aggregation may occur in any order with labels from any

other field.

Finally, we point out thatField Splitting is a precomputed optimization. It is possible that

the addition of new filters to the filter set could cause one the overlap threshold to be exceeded in

a particular field, and thus degrade the performance ofDCFL. While this is possible, our analysis

of real filter sets suggests that it is not probable. Currently most filter sets are manually configured,

thus updates are exceedingly rare relative to searches. Furthermore, the common structure of filters

in a filter set suggests that new filters will most likely be a new combination of fields alreadyin the

filter set. For example, a network administrator may add a filter matching all packets for application

A flowing between subnetsB andC, where specificationsA, B, C already exist in the filter set.

159

7.4 Aggregation Nodes

Well-studied data structures such as hash tables and B-Trees are capable of efficiently representing

a set [13]. We focus on three options that minimize the number of sequential memory accesses,

SMA, required to identify the composite labels inFquery which are members of the setF1,...,i. The

first is a variant on the popular Bloom filter which has received renewed attention in the research

literature [15]. The second and third options leverage the compression provided by field labels

and meta-labels to index into an array of lists containing the composite labels for the field value

combinations inF1,...,i. These indexing schemes perform parallel comparisons in order to minimize

the requiredSMA; thus, the performance of these schemes depends on the word sizem of the

memory storing the data-structures. For all three options, we derive equations for theSMAand

number of memory wordsW required to store the data-structure.

7.4.1 Bloom Filter Arrays

A Bloom filter is an efficient data structure for set membership queries with tunable false positive

errors. In our context, a Bloom filter computesk hash functions on a labelL to producek bit

positions in a bit vector ofm bits. If all k bit positions are set to 1, then the label is declared to

be a member of the set. Broder and Mitzenmacher provide a nice introduction to Bloom filters and

their use in recent work [15]. We provide a brief introduction to Bloom filters and a derivation

of the equations governing false positive probability in Section 2.1.3. False positiveanswers to

membership queries causes the matching label set,F1,...,i(a, . . . , x), to contain labels that do not

correspond to field combinations in the filter set. These false positive errors can be “caught” at

downstream aggregation nodes using explicit representations of label sets. We discusstwo options

for such data-structures in the next section. This property does preclude use of Bloom filters in the

last aggregation node in the network. As we discuss in Section 7.7, this does not incur a performance

penalty in real filter sets.

Given that we want to minimize the number of sequential memory accesses at each aggre-

gation node, we want to avoid performing multiply memory accesses per set membership query. It

would be highly inefficient to performk separate memory accesses to check if a single bit is set

in the vector. In order to limit the number of memory accesses per membership query to one, we

propose the use of an array of Bloom filters as shown in Figure 7.6. ABloom Filter Array is a

set of Bloom filters indexed by the result of a pre-filter hash functionH(L). In order to perform

a set membership query for a labelL, we read the Bloom filter addressed byH(L) from memory

and store it in a register. We then check the bit positions specified by the results of hash functions

h1(L), . . . , hk(L). TheMatch Logicchecks if all bit positions are set to 1. If so, it adds labelL to

the set of matching labelsF1,...,i(a, . . . , x).

Set membership queries for the labels inFquery need not be performed in any order and may

be performed in parallel. Using an embedded memory block withP ports requiresP copies of the

160

F1,…,i(a,…,x)
{(1,0), (4,0), (5,3)}

1101001011 … 010

0101101001 … 110

0011001010 … 011

1111001010 … 001

m

1

W

2

H(L)

h1(L) hk(L)

Fquery(1,…,x)
(1,0) (1,2) (1,3)
(4,0) (4,2) (4,3)
(5,0) (5,2) (5,3)

Fi

F1,…,i-1(a,…,w)
{1,4,5}

Fi(x)
{0,2,3}

Bloom Filter Array
Aggregation Node

0011001010 … 011

Match Logic

x

Figure 7.6: Example of an aggregation node using aBloom Filter Arrayto aggregate field label set
Fi(x) with label setF1,...,i−1(a, . . . , w).

logic for the hash functions andMatch Logic. Given the ease of implementing these functions in

hardware and the fact thatP is rarely more than four, the additional hardware cost is tolerable. The

number of sequential memory accesses,SMA, required to perform set membership queries for all

labels inFquery is simply

SMA=
|Fquery|

P
(7.3)

The false positive probability is

f =

(

1

2

)k

(7.4)

when the following relationship holds

k =
m

n
ln 2 (7.5)

wheren is the number of labels|F1,...,i| stored in the Bloom filter. Settingk to four produces a

tolerable false positive probability of0.06. Assuming that we store one Bloom filter per memory

word, we can calculate the required memory resources given the memory word sizem. Let W be

the number of memory words. The hash functionH(L) uniformly distributes the labels inF1,...,i

across theW Bloom filters in theBloom Filter Array. Thus, the number of labels stored in each

161

Bloom filter is

n =
|F1,...,i|

W
(7.6)

Using Equation 7.5 we can compute the number of memory words,W , required to maintain the

false positive probability given by Equation 7.4:

W =

⌈

k × |F1,...,i|

m× ln 2

⌉

(7.7)

The total memory requirement ism×W bits. Recent work has provided efficient mechanisms for

dynamically updating Bloom filters [16, 25].

7.4.2 Meta-Label Indexing

We can leverage the compression provided by meta-labels to construct aggregation nodes that ex-

plicitly represent the set of field value combinations,F1,...,i. The field value combinations inF1,...,i

can be identified by a composite label which is the concatenation of the meta-labelfor the combina-

tion of the first(i− 1) fields,L1,...,i−1, and the label for fieldi, Li. We sort these composite labels

into bins based on meta-labelL1,...,i−1. For each bin, we construct a list of the labelsLi, where each

entry storesLi and the new meta-label for the combination ofi fields,L1,...,i. We store these lists in

an arrayAi indexed by meta-labelL1,...,i−1 as shown in Figure 7.7.

UsingL1,...,i−1 as an index allows the total number of set membership queries to be limited

by the number of meta-labels received from the upstream aggregation node,|F1,...,i−1(a, . . . , w)|.

Note that the size of a list entry,s, is

s = lg |Fi|+ lg |F1,...,i| (7.8)

ands is typically much smaller than the memory word size,m. In order to limit the number of

memory accesses per set membership query, we storeN list entries in each memory word, where

N =
⌊

m
s

⌋

. This requiresN × |Fi(x)| way match logic to compare all of the field labels in the

memory word with the set of matching field labels from the field search engine,Fi(x). Since

set membership queries may be performed independently, the total number of sequential memory

accesses,SMA, depends on the size of the index meta-label set,|F1,...,i−1(a, . . . , w)|, the size of the

lists indexed by the labels inF1,...,i−1(a, . . . , w), and the number of memory portsP . In the worst

case, the labels index the|F1,...,i−1(a, . . . , w)| longest lists inAi. Let Length be an array storing

the lengths of the lists inAi in decreasing order. The worst-case sequential memory accesses is

SMA=

∑|F1,...,i−1(a,...,w)|
j=1

⌈

Length(j)
N

⌉

P
(7.9)

As with theBloom Filter Array, the use of multi-port memory blocks does require replication of the

multi-way match logic. Due to the limited number of memory ports, we argue that this represents

162

F1,…,i(a,…,x)
{(1,0), (4,0), (5,3)}

Fi

F1,…,i-1(a,…,w)
{1,4,5}

Fi(x)
{0,2,3}

Meta-Label Indexing
Aggregation Node

Match
Logic

x

0

| F1,…,i-1|-1

1

3

0

7

1

1 4

1 3

2

0

2

3

list size≤ M

N ≤ max|Fi(x)|

Figure 7.7: Example of an aggregation node usingMeta-Label Indexingto aggregate field label set
Fi(x) with meta-label setF1,...,i−1(a, . . . , w).

a negligible increase in the resources required to implementDCFL. The number of memory words,

W , needed to store the data structure is

W =

|F1,...,i−1|
∑

j=1

⌈

Length(j)

N

⌉

(7.10)

The total memory requirement ism ×W bits. Adding or removing a label fromF1,...,i requires

an update to a single list entry. Packing multiple list entries on to a single memory word slightly

complicates the memory management; however, given that we seek to minimize the number of

memory words occupied by a list, the number of individual memory reads and writes per update is

small.

Finally, we point out that the data structure may be re-organized to useLi as the index. This

variant,Field Label Indexing, is effective when|Fx| approaches|F1,...,x|. When this is the case, the

number of composite labelsL1,...,i containing labelLi is small and the length of the lists indexed

by Fi(x) are short.

163

7.5 Field Search Engines

A primary advantage ofDCFL is that it allows each filter field to be searched by a search engine

optimized for the particular type of search. We discuss a number of single field search techniques

in Chapter 2. While the focus of this chapter is the novel aggregation technique, we briefly discuss

single field search techniques suitable for use withDCFL in order to to highlight the potential

performance.

7.5.1 Prefi x Matching

Due to its use of decomposition,DCFL requires that the search engines for the IP source and desti-

nation addresses returnall matching prefixes for the given addresses. As discussed in Section 2.3,

any longest prefix matching technique can support All Prefix Matching (APM), but some more ef-

ficiently than others. The most computationally efficient technique for longest prefix matching is

Binary Search on Prefix Lengths[24]. When precomputation and marker optimizations are used,

the technique requires at most five hash probes per lookup for 32-bit IPv4 addresses. As reported in

Section 5.4, real filter sets contain a relatively small number of unique prefix lengths,thus the real-

ized performance should be better for real filter sets. Recall that markers direct the search to longer

prefixes that potentially match, thus skipping shorter prefixes that may match. In order to support

APM, Binary Search on Prefix Lengthsmust precompute all matching prefixes for each “leaf” in

the trie defined by the set of address prefixes. While computationally efficient for searches, this

technique does present several challenges for hardware implementation. Likewise, the significant

use of precomputation and markers degrades the dynamic update performance,as an update may

require many memory transactions.

As we demonstrated in Chapter 3, compressed multi-bit trie algorithms readily map to hard-

ware and provide excellent lookup and update performance with efficient memory and hardware uti-

lization. Specifically, our implementation of the Tree Bitmap technique requires at most 11 memory

accesses per lookup and approximately six bytes of memory per prefix. Each search engine con-

sumes less than 1% of the logic resources on a commodity FPGA2. As discussed in Section 3.6,

there are a number of optimizations to improve the performance of this particular implementation.

Use of an initial lookup array for the first 16 bits reduces the number of memory accesses to at

most seven. Coupled with a simple two-stage pipeline, the number of sequential memory accesses

per lookup can be reduced to at most four. Trie-based LPM techniques such as Tree Bitmap easily

support all prefix matching with trivial modifications to the search algorithm. For the purpose of

our discussion, we will assume an optimized Tree Bitmap implementation requiring at mostfour

memory accesses per lookup and six bytes per prefix of memory.

2If targeted to the low-cost Xilinx Spartan-3 family of FPGAs (less than $12 USD for a one milliongate device), each
engine would cost approximately $0.12 USD.

164

Exact Port
[69] 1
[323] 3
[4501] 4
[127] 6

x = i

Flag(WC): 1
Label(WC): 2

Flag(LO): 0
Label(LO): 0

< 1024 i � x � j Arbitrary
Ranges

[70:75] 5
[1123:1132] 7
[454:457] 8

true false

Port(x) = 4501

Matching Port Labels
{1,2,4}

Flag(HI): 1
Label(HI): 1

Figure 7.8: Block diagram of range matching using parallel search engines for each port class.

7.5.2 Range Matching

Searching for all arbitrary ranges that overlap a given point presents a greater challenge than prefix

matching. We discuss a number of range matching techniques in Section 2.4. Based on the observa-

tions reported in Section 5.3.2, range matching can be made sufficiently fast for real filter sets using

a set of parallel search engines, one for each port class, as shown in Figure 7.8. Recall that three

port classes, WC, HI, and LO, consist of a single range specification. The search engine for the

first port class, wildcard (WC), simply consists of a flag specifying whether or not the wildcardis

specified by any filters in the filter set and a register for the label assigned to this range specification.

Similarly, the search engines for the HI and LO port classes also consist of flags specifying whether

or not the ranges are specified by any filters in the filter set and registers for the labels assigned to

those range specifications. We also add logic to check if the port is less than 1024; this checks for a

match on the HI and LO port ranges,[1024 : 65535] and[0 : 1023], respectively.

For the 12 real filter sets we studied, the number of exact port numbers specified by filters

was at most 183. The port ranges in the EM port class may be efficiently searched using any suf-

ficiently fast exact match data-structure. Entries in this data-structure are simply the port number

and the assigned label. A simple hash table could bound searches to at most two memory accesses.

Finally, the set of arbitrary ranges in the AR port class may be searched with any range matching

technique. Fortunately, the set of arbitrary ranges tends to be small; the 12 real filter sets specified at

most 27 arbitrary ranges. A simple balanced interval tree data-structure requires at mostO(k lg n)

accesses, wherek is the number of matching ranges andn is the number of ranges in the tree. Other

options for the AR search engine include theFat Inverted Segment Treediscussed in Section 2.4.1

and converting the arbitrary ranges to prefixes as discussed in Section 2.4.3 and employing an all

prefix matching search engine. Given the limited number of arbitrary ranges, addingmultiple pre-

fixes per range to the data-structure does not cause significant memory inefficiency.With sufficient

165

optimization, we assume that range matching can be performed with at most four sequential mem-

ory accesses and the data-structures for the AR and EM port classes easily fit within a standard

embedded memory block of 18kb.

7.5.3 Exact Matching

The protocol and flag fields may be easily searched with a simple exact match data-structure such as

a hash table. Given the small number of unique protocol and flag specifications inthe real filter sets

(less than 9 unique protocols and 11 unique flags), the time per search and memory space required

is trivial. As we discuss in Section 5.8, we expect that additional filter fields will also require exact

match search engines. Given the ease of implementing hash functions in custom andreconfigurable

logic, we do not foresee any performance bottlenecks for the search engines for these fields.

7.6 Dynamic Updates

Another strength ofDCFL is its support of incremental updates. Adding or deleting a filter from

the filter set requires approximately the same amount of time as a search operation anddoes not

require that we flush the pipeline and update all data-structures in an atomic operation. An update

operation is treated as a search operation in that it propagates through theDCFL architecture in the

same manner. The query preceding the update in the pipeline operates on data-structures prior to

the update; the query following the update in the pipeline operates on data-structures following the

update.

Consider inserting a filter to the filter set. We partition the filter into fields (performing field

splits, if necessary) and insert each field into the appropriate input buffer of the field search engines.

In parallel, each field search engine performs the update operation just as it would perform searches

in parallel. As shown in Figure 7.9, an add operation entails a search of the data-structurefor the

given filter field. If the data-structure does not contain the field, then we add the field to the data-

structure and assign the next free label3. Finally, we increment the count value for the field entry.

Each field search engine returns the label for the filter field. At the next pipeline cycle,the field

search engines feed the update operation and field labels to the aggregation network. Logically, the

sameInsert operation is used by both field search engines and aggregation nodes, only the type

of itemandlabel is different for the two. Each aggregation node receives the “insert” command and

the labels from the upstream nodes. Theitem is the composite label formed from the labels from

the upstream nodes. Note that for an update operation, field search engines and aggregation nodes

only pass on one label, thus each aggregation node only operates on one composite label oritem. If

the composite label is not in the set, then the aggregation node adds it to the set. Notethat thelabel

returned by theSearch or Add operations may be a composite label or meta-label, depending on

3We assume that each data-structure keeps a simple list of free labels that is initialized with allavailable labels. When
labels are “freed”due to a delete operation, they are added to the end of the list.

166

Insert (item)

1 label←Search (item)
2 If (label= NULL)
3 label←Add(item)
4 Count [label]++
5 return label

Figure 7.9: Pseudocode forDCFL update (add).

Remove(item)

1 label←Search (item)
2 Count [label]−−
3 If (Count [label] = 0)
4 Delete (item)
5 return label

Figure 7.10: Pseudocode forDCFL update (delete).

the type of aggregation nodes in use. Finally, the aggregation increments the count for the label

and passes it on to the next aggregation node. The final aggregation node passesthe label on to the

priority resolution stage which adds the field label to its data-structure according to its priority tag.

Removing a filter from the filter set proceeds in the same way. Both field search engines

and aggregation nodes perform the same logicalRemoveoperation shown in Figure 7.10. We first

find the label for the item, then decrement the count value for theitem. A Delete operation is

performed if the count value for theitem is zero. Thelabel is passed on to the next node in the

DCFL structure. The final aggregation node passes the filter label to the priority resolution stage

which removes the field label from its data-structure.

Note thatAdd andDelete operations on field search engine and aggregation node data-

structures are only performed when count values change from zero to one and oneto zero, respec-

tively. The limited number of unique field values in real filter sets suggests significant sharing of

unique field values among filters. We expect typical updates to only change a couple field search en-

gine data-structures and aggregation node data-structures. In the worst case, inserting or removing a

filter produces an update tod field search engine data-structures and(d− 1) updates to aggregation

node data-structures, whered is the number of filter fields.

167

7.7 Performance Evaluation

In order to evaluate the performance ofDCFL, we used 12 real filter sets and theClassBenchtools

suite to perform simulations testing scalability and sensitivity to filter set properties. The real filter

sets were graciously provided from ISPs, a network equipment vendor, and other researchers in the

field. The filter sets range in size from 68 to 4557 filters and we discuss their relevant propertiesin

Chapter 5. As described in Chapter 6, we constructed aClassBench parameter filefor each filter

set and used these files to generate large synthetic filter sets that retain the structural properties of

the real filter sets. TheClassBench Trace Generatorwas used to generate input traffic for both the

real filter sets and the synthetic filter sets used in the performance evaluation. For all simulations,

header trace size is at least an order of magnitude larger than filter set size. The metrics of interest

for DCFL are the maximum number of sequential memory accesses per lookup at any aggregation

node,SMA, and the memory requirements. We choose to report the memory requirements in bytes

per filter,BpF, in order to better assess the scalability of our technique.

The type of embedded memory technology directly influences the achievable performance

and efficiency ofDCFL; thus, for each simulation run we compute theSMA and total memory

words required for various memory word sizes. Standard embedded memory blocks provide 36-

bit memory word widths [107, 74]; therefore, we computed results for memory word sizes of 36,

72, 144, 288, and 576 bits corresponding to using 1, 2, 4, 8, and 16 memory blocks per aggregation

node. All results are reported relative to memory word size. The choice of memory wordsize allows

us to explore the tradeoff between memory efficiency and lookup speed. We assert that the use of

16 embedded memory blocks to achieve a memory word size of 576 bits is reasonable given current

technology, but certainly near the practical limit. For simplicity, we assume all memory blocks are

single-port,(P = 1). Given that all set membership queries are independent, theSMAfor a given

implementation ofDCFL may be reduced by a factor ofP .

In order to demonstrate the achievable performance ofDCFL, each simulation performs

lookups on all possible aggregation network constructions. At the end of the simulation, we com-

pute the optimal aggregation network by choosing the optimal network structure and optimal node

type for each aggregation node in the graph. The three node types are discussed in Section 7.4

along with the derivation of the equations forSMAand memory requirements for each type:Bloom

Filter Array, Meta-Label Indexing, andField Label Indexing. In the case that two node types pro-

duce the sameSMAvalue, we choose the node type with the smaller memory requirements. Our

simulation also allows us to select the aggregation network structure and node types in order to

optimize worst-case or average-case performance. Worst-case optimal aggregation networks select

the structure and node types such that the value of the maximumSMAfor any aggregation node in

the network is minimized. Likewise, average-case optimal selects the structure and nodetypes such

that the maximum value of the averageSMAfor any aggregation node in the network is minimized.

Computing the optimal aggregation network at the end of the simulation allows us to observe trends

168

in the optimal network structure and node type for filter sets of various type, structure, and size. We

observe that optimal network structure and node type largely depends on filter set structure. With

few exceptions, variables such as filter set size and memory word size do not affect the composition

of the optimal aggregation network. We observe that theBloom Filter Arraytechnique is commonly

selected as the optimal choice for the first one or two nodes in the aggregation network. With rare

exceptions,Meta-Label Indexingis chosen for aggregation nodes at the end of the aggregation net-

work. This is a convenient result, as the final aggregation node in the network cannot use theBloom

Filter Array technique in order to ensure correctness. We find this result to be somewhat intuitive

since the size of a meta-label increases with the number of unique combinations in the set which

typically increases with the number of fields in the combination. When using meta-labels to index

into an array of lists, a larger meta-label addresses a larger space which in turn “spreads” the labels

across a larger array and limits the length of the lists at each array index.

In the first set of tests we used the 12 real filter sets and generated header traces using the

ClassBench Trace Generator. The number of headers in the trace was 50 times the number of filters

in the filter set. As shown in Figure 7.11(a), the worst-caseSMAfor all 12 real filter sets is ten or

less for a worst-case optimal aggregation network using memory blocks with a word size of288

bits. Also note that the largest filter set,acl5, of 4557 filters achieves the best performance with

a worst-caseSMAof two for worst-case optimal aggregation network using memory blocks with

a word size of 144 bits. In order to translate these results into achievable lookup rates, assume

a current generation ASIC with dual-port memory blocks,(P = 2), operating at 500 MHz. The

worst-caseSMAfor all 12 filter sets is then five or less using a word size of 288 bits. Under these

assumptions, the pipeline cycle time can be 10ns allowing theDCFL implementation to achieve

100 million searches per second which is comparable to current TCAMs. Search performance can

be doubled by doubling the clock frequency or using quad-port memory blocks,both of which are

possible in current generation ASICs.

As shown in Figure 7.11(c), the averageSMA for all filter sets falls to four or less using

a memory word size of 288 bits. Filter setacl5 also achieves the best average performance with

an averageSMAof 1.2 for a word size of 288. As in many other packet classification techniques,

average performance is significantly better than worst-case performance.

Worst-case optimal memory consumption is shown in Figure 7.11(e). Most filter sets re-

quired at most 40 bytes per filter (BpF) for all word sizes; thus, 1MB of embedded memory would

be sufficient to store 200k filters. There are two notable exceptions. The results for filter setacl1

show a significant increase in memory requirements for larger word sizes. For memory word sizes

of 36, 72, and 144 bits,acl1 requires less than 11 bytes per filter; however, memory requirements

increase to 61 and 119 bytes per filter for word sizes 288 and 576, respectively. We also note that

increasing the memory word size foracl1 yields no appreciable reduction inSMA; all memory

word sizes yielded anSMAof five or six. These two pieces of data suggest that in the aggregation

node data-structures, the size of the lists at each index entry are short; thus, increasing the memory

169

0

5

10

15

20

36 108 180 252 324 396 468 540
Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,W

o
rs

t-
ca

se
S

M
A

ipc1 (1702) acl5 (4557)fw1 (283)

0

5

10

15

20

25

30

36 108 180 252 324 396 468 540
Memory Word Size (bits)

A
vg

er
ag

e
O

p
ti

m
al

,W
o

rs
t-

ca
se

S
M

A

ipc1 (1702) acl5 (4557)fw1 (283)

0

2

4

6

8

10

36 108 180 252 324 396 468 540
Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,A

ve
ra

g
e

S
M

A

ipc1 (1702) acl5 (4557)fw1 (283)

0

2

4

6

8

10

36 108 180 252 324 396 468 540
Memory Word Size (bits)

A
ve

ra
g

e
O

p
ti

m
al

,A
ve

ra
g

e
S

M
A

ipc1 (1702) acl5 (4557)fw1 (283)

0

20

40

60

80

100

120

36 108 180 252 324 396 468 540
Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,B

p
F

acl5 (4557)

fw1 (283)

ipc1 (1702)

0

20

40

60

80

100

120

36 108 180 252 324 396 468 540
Memory Word Size (bits)

A
ve

ra
g

e
O

p
ti

m
al

,B
p

F

acl5 (4557)

fw1 (283)

ipc1 (1702)

Figure 7.11: Performance results for 12 real filter sets; left-column shows worst-case sequential
memory accesses (SMA), average SMA, and memory requirements in bytes per filter (BpF) for ag-
gregation network optimized for worst-case SMA; right-column shows same results for aggregation
network optimized for average-case SMA; call-outs highlight three specific filter sets of various
sizes and types (filter set size given in parentheses).

170

0

2

4

6

8

10

12

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,W

o
rs

t-
ca

se
S

M
A

fw5 (50k)

fw5 (20k)

fw5 (10k)

acl5 (20k)

acl5 (10k)

acl5 (50k)
0

1

2

3

4

5

6

7

8

9

10

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

o
p

ti
m

al
,A

ve
ra

g
e

S
M

A fw5 (50k)

fw5 (20k)

fw5 (10k)

acl5 (10k) acl5 (20k)

acl5 (50k)

0

50

100

150

200

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,B

p
F

acl5 (50k)

acl5 (20k)

acl5 (10k)

fw5 (50k)

fw5 (20k)

fw5 (10k)

Figure 7.12: Performance results for synthetic filter sets containing 10k, 20k, and 50k filters, gener-
ated with parameter files from filter setsacl5 andfw5; call-outs highlight most pronounced effects
(number of filters given in parentheses).

word-size linearly increases the memory inefficiency without yielding any fewer memory accesses.

We believe that this is also the case with the optimal aggregation network foracl2 with memory

word size 288. Clearly, finding the optimum balance of lookup performance and memory efficiency

requires careful selection of memory word size.

Figure 7.11(b) shows the worst-caseSMAfor all 12 real filter sets for an average-case op-

timal aggregation network. Figure 7.11(d) shows the averageSMA for all 12 real filter sets for

an average-case optimal aggregation network. When optimizing for averageSMA, average perfor-

mance is improved by approximately 25%, but worst-case performance suffers by approximately

50%. With the exception of rare application environments, sacrificing worst-case performance for

average performance is unfavorable. For the remaining simulations, we only reportworst-case op-

timal results.

The second set of simulations investigates the scalability ofDCFL to larger filter sets. Re-

sults are shown in Figure 7.12. This set of simulations utilized theClassBenchtools suite to generate

171

synthetic filter sets containing 10k, 20k, and 50k filters usingparameter filesextracted from filter

setsacl5 andfw5. As shown in Figure 7.12(a), the worst-caseSMA is ten or less for all filter sets

and memory word sizes. The most striking feature of each simulation is the flat response to memory

word size. For all filter sets generated with thefw5 parameter file, the worst-caseSMAperformance

remains constant for memory word sizes greater than or equal to 72 bits. For all filtersets generated

with theacl5 parameter file, the worst-caseSMAperformance remains constant for memory word

sizes greater than or equal to 144 bits. TheClassBench Synthetic Filter Set Generatormaintains the

field overlap properties specified in theparameter file. Coupled with the results in Figure 7.12, this

confirms that the property of filter set structure most influential onDCFL performance is the maxi-

mum number of unique field values matching any packet header field. As discussed in Chapter 5, we

expect this property to hold as filter sets scale in size. If field overlap does increase, theField Split-

ting optimization provides a way to reduce this to a desired threshold. As shown in Figure 7.12(c),

the memory requirements increase with memory word size. Given the favorableSMAperformance

there is no need to increase the word size beyond 144 bits, as it only results in a linear increase in

memory inefficiency. These results imply that tuning the memory word size is less critical forlarge

filter sets.

The third set of simulations investigates the effect of filter scope on the performance of

DCFL. Recall that scope is measure of the specificity of the filters in the filter set.ClassBench

provides high-level control over the average scope of the filters in the filter set via aninput parameter

s. We generated synthetic filter sets containing 16000 filters usingparameter filesfrom a variety of

filter sets.For eachparameter file, we generated filter sets using scope parameters−1, 0, and 1. Note

that these filter sets are used in the evaluation of theClassBenchtools suite in Figure 6.4.2. The

scope parameter had the most pronounced effects on worst-caseSMA for the filter sets generated

with theparameter filefrom ipc1. As shown in Figure 7.13(a), decreasing the average scope of the

filters in the filter set (s = −1) results in significantly better performance; thus, as filters become

more specific the performance ofDCFL improves. This is a favorable result given the generally

accepted conjecture the primary source of future filter set growth will be flow specific filters for

applying network services. If we increase the scope of the filters in the filter set,DCFL performance

suffers. This trend also holds for the averageSMA. As shown in Figure 7.13(c), filter set specificity

has little effect on memory requirements for memory word sizes of 144 bits or less. When using

larger memory word sizes, filter sets containing more specific filters require more memory perfilter;

as filters become less specific they become more memory efficient. We believe this resultis due to

the fact that less-specific filter fields are more likely to be used by several filters. For example, the

port range for all user ports is more likely to be used by multiple filters than a specific port number.

When we construct filters with less-specific fields, the sharing of filter fields among filters increases

and the memory efficiency of labeling is more apparent.

The fourth set of simulations investigate the efficacy and consequences of theField Splitting

optimization. We selected two of the worst-performing real filter sets and performed simulations

172

0

10

20

30

40

50

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,W

o
rs

t-
ca

se
S

M
A ipc1 (s = 1)

ipc1 (s = 0)

ipc1 (s = -1)

0

5

10

15

20

25

30

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

o
p

ti
m

al
,A

ve
ra

g
e

S
M

A ipc1 (s = 1)

ipc1 (s = 0)

ipc1 (s = -1)

0

50

100

150

200

250

300

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,B

p
F

icp1 (s = -1)

ipc1 (s = 0)

ipc1 (s = 1)

Figure 7.13: Performance results for synthetic filter sets containing 16k filters, generated with the
ipc1 parameter filewith scope parameterss {-1,0,1}; call-outs highlight most pronounced effects
(scope parameter given in parentheses); note that these filter sets are used in the evaluation of the
ClassBenchtools suite in Figure 6.4.2.

with various field overlap thresholds. The performance results are summarized in Figure 7.14.For

acl2, Field Splitting reduces the worst-caseSMA from 16 to 10 for 36-bit memory words. For

fw1, Field Splitting reduces the worst-caseSMA from 9 to 5 for 36-bit memory words. In these

cases,Field Splittingprovides a 37% and 44% increase in performance, respectively. It is important

to note, however, that the impact ofField Splitting is reduced as we increase memory word size.

Clearly, the primary benefit ofField Splittingis that it allows us to achieve better performance using

smaller memory word sizes which improves the memory efficiency. As shown in Figure 7.14(c), the

memory utilization for all filter sets using memory word sizes of 74-bits or less remains well-below

40 bytes per filter. Consider the specific case ofacl2. In order to achieve a worst-caseSMAof eight

or less withoutField Splitting, we must use a memory word-size of 144 bits resulting in memory

requirements of 44 bytes per filter. UsingField Splittingwith a field overlap threshold of three, we

173

0

2

4

6

8

10

12

14

16

18

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,W

o
rs

t-
ca

se
S

M
A

acl2

fw1

fw1 (t = 3)

acl2 (t = 3)

0

1

2

3

4

5

6

7

8

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

o
p

ti
m

al
,A

ve
ra

g
e

S
M

A acl2

acl2 (t = 3)

fw1 (t = 3)fw1

0

20

40

60

80

100

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,B

p
F

fw1 (t = 3)

fw1

acl2

acl2 (t = 4)

Figure 7.14: Performance results for real filter sets (acl2 and fw1) using theField-Splittingopti-
mization; call-outs highlight most pronounced effects (field overlap threshold givenin parentheses).

achieve the desired worst-caseSMAperformance using a memory word-size of 72 bits resulting in

memory requirements of 35 bytes per filter. Recall thatField Splittingdoes increase the number of

aggregation nodes in the aggregation network, thus increasing the number of memory blocks and

logic required for implementation. However, these results show that the total memory requirements

are actually reduced for a particular performance target. It is important to note that we do reach a

point of diminishing returns withField Splitting. The aggregation network can grow too large if

too many splits are required to achieve a particularly low field overlap threshold. In this case,the

impact on worst-caseSMAis minimal while the memory resource requirements increase drastically

due to the additional overhead. This situation is reflected in Figure 7.14(c) for filter setfw1 with a

field overlap threshold of three and memory word size of 288 bits.

The fifth and final set of simulations investigate the scalability ofDCFL to additional filter

fields. Using theClassBenchtools suite, we generated four filter sets containing 16000 filters using

174

0

2

4

6

8

10

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,W

o
rs

t-
ca

se
S

M
A 7 fields

8 fields

9 fields

6 fields

0

0.5

1

1.5

2

2.5

3

3.5

4

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

o
p

ti
m

al
,A

ve
ra

g
e

S
M

A

7 fields

8 fields 9 fields

6 fields

0

20

40

60

80

100

120

140

160

180

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

O
p

ti
m

al
,B

p
F

7 fields

8 fields9 fields

6 fields

Figure 7.15: Performance results for synthetic filter sets containing 16k filters, generated with pa-
rameter file from filter setacl5 with extra filter fields; call-outs highlight most pronounced effects
(number of filter fields given in parentheses).

theacl5 parameter file. No smoothingor scopeadjustments were applied. The first filter set was

generated such that half of the filters specifying the TCP or UDP protocols specified onenon-

wildcard field in addition to the standard six filter fields (the 5-tuple plus protocol flags). The

non-wildcard field value was selected from a set of 100 random values using a uniform random

variable. The remaining filter sets were generated in the same manner with two, three, and four

extra field values. As shown in Figure 7.15(a), extra filter fields have a negligible effect on worst-

caseSMAperformance. We believe that this is attributable to two impetuses: (1) the additional

filter fields allow filters to be more specific, and (2) the additional filter fields are exact matchfields

and the maximum fields overlap is at most two. As reflected in Figure 7.15(c), the increase in

memory requirements for an additional filter field is small for memory word sizes of 144 bits or

less. Specifically, when using 144-bit memory words the memory requirements increase by 14

bytes per filter when adding a seventh field and 16 bytes per filter when adding aneighth filter field.

175

There is no observable increase when adding the ninth filter field. This is constitutes an average of

10 bytes per filter for each additional field. Given our reasonable assumptions regarding the nature

of additional filter fields in future filter sets, we assert that the performance and scalability ofDCFL

will make it an even more compelling solution for packet classification as filter sets scale insize and

the number of filter fields.

7.8 Related Work

In general, there have been two major threads of research efforts addressing the packet classification

problem: algorithmic and architectural. A few pioneering groups of researchers posedthe problem,

provided complexity bounds, and offered a collection of algorithmic solutions [50, 51, 52, 53].

Subsequently, the design space has been thoroughly explored by many offering new algorithms and

improvements upon existing algorithms [54, 27, 29]. Given the inability of early algorithms to meet

performance constraints imposed by high speed links, researchers in industry and academia devised

architectural solutions to the problem. This thread of research produced the most widely-used packet

classification device technology, Ternary Content Addressable Memory (TCAM) [55, 56,17, 57].

While they provide sufficient speed, current TCAM-based solutions consume exorbitantamounts of

power and hardware resources relative to implementations of efficient algorithms. Recent work has

addressed many of the unfavorable aspects of current TCAM-based solutions [108, 32]; however,

there remain fundamental limits to their scalability and efficiency.

The most promising algorithmic research embraces the practice of leveraging the statistical

structure of filter sets to improve average performance [50, 54, 58, 51, 59]. Several algorithms in

this class are amenable to high-performance hardware implementation. New architectural research

combines intelligent algorithms and novel architectures to eliminate many of the unfavorable char-

acteristics of current TCAMs [32]. We observe that the community appears to be converging on

a combined algorithmic and architectural approach to the problem [28]. Our solution,Distributed

Crossproducting of Field Labels(DCFL), employs this combined approach to provide a scalable,

high-performance packet classifier. Chapter 4 provides a thorough survey of packet classification

techniques using a taxonomy that frames each technique according to its high-level approach. In

this section, we highlight the sources of the key ideas and data structures which we distill and utilize

in DCFL. In order to demonstrate the value of our solution relative to the state of the art, we also

contrast it with two leading solutions which are arguably the top solutions from the algorithmic and

architectural threads.

As clearly indicated by the name,DCFL draws upon the seminalCrossproductingtechnique

introduced by Srinivasan, Varghese, Suri, and Waldvogel [53].DCFL avoids the exponential blowup

in memory requirements experienced byCrossproductingby only storing the labels for field values

and combinations of field values present in the filter table. It retains high-performanceby aggregat-

ing intermediate results in a distributed fashion. Gupta and McKeown introducedRecursive Flow

176

Classification(RFC) which provides high lookup rates at the cost of memory inefficiency [50]. Sim-

ilar to theCrossproductingtechnique,RFCperforms independent, parallel searches on “chunks” of

the packet header, where “chunks” may or may not correspond to packetheader fields. The results

of the “chunk” searches are combined in multiple phases, rather than a single step asin Crosspro-

ducting. The result of each “chunk” lookup and aggregation step in (RFC) is an equivalence class

identifier,eqID, that represents the set of potentially matching filters for the packet. There is a sub-

tle, yet powerful difference between the use of equivalence classes inRFCand field labels inDCFL.

In essence, the number of labels inDCFL grows linearly with the number of unique field values in

the filter table. The number ofeqIDsin RFCdepends upon the number of distinct sets of filters that

can be matched by a packet. The number ofeqIDsin an aggregation step scales with the number of

unique overlapping regions formed by filter projections. Another major difference betweenDCFL

andRFC is the means of aggregating intermediate results.RFC lookups in “chunk” and aggrega-

tion tables utilize indexing, causingRFC to make very inefficient use of memory. The index tables

used for aggregation also require significant precomputation in order to assign the propereqID for

the combination of theeqIDs of the previous phases. Such extensive precomputation precludes dy-

namic updates at high rates. As we have shown,DCFL uses efficient set membership data structures

which can be engineered to provide fast lookup and update performance. Eachdata structure only

stores labels for unique field combinations present in the filter table; hence, they make efficient use

of memory and do not require significant precomputation. In order to illustrate the differences be-

tweenRFCandDCFL, we provide an example of anRFCsearch for two “chunks” of a search onn

“chunks” in Figure 7.16. The squares[a . . . l] represent the unique projections of the two “chunks”

x andy for all filters in a filter table. The number ofeqIDsfor the “chunk” lookups is 11 for each

dimensionx andy, as 11 unique sets of filters are formed by the projections onto thex andy axes.

SinceRFCutilizes indexing for lookups, each “chunk” table requires2b entries, whereb is the size

in bits of the “chunk”. Note that if the number of unique projections werelabeledas inDCFL, only

six labels for each dimension would be required, and the set membership data structure would only

need to store six entries. In order forRFC to aggregate theeqIDsfrom “chunks”x andy, it must

compute all of the unique sets of filters for the two-dimensional overlaps. As shown in Figure 7.16,

this results in 25eqIDs. The aggregation table requires24+4 = 256 entries, aseqID(x)andeqID(y)

are four bits in size andRFCutilizes indexing to findeqID(x,y). Note that inDCFL, a label would

simply be assigned to each unique 2-d projection[a . . . l] and stored in a set membership data struc-

ture. In general,DCFL can provide line-speed lookups, likeRFC, but with much more efficient use

of memory and support for dynamic updates at high rates.

Our approach also shares similarities with theParallel Packet Classification(P 2C) scheme

introduced by van Lunteren and Engbersen [28]. Specifically, bothDCFL andP 2C fall into the

class of techniques using independent field searches coupled with novel encoding and aggregation of

intermediate results. The primary advantage ofDCFL overP 2C is its use of SRAM and amenability

to implementation in commodity hardware technology;P 2C requires the use of a separate TCAM

177

3210 4 5 0

a
,b

,c,g,h,i

φ

a
b

c

y

x

a,b,d,e

φ
c,f

b,c,e,f
a,b,c,d,e,f

a,f

φ

RFC
eqID(y)

0
10
9
8
7
6

0

RFC
eqID(x)

φ a
,g

g
h

i

j
k

l

d
e

f

g,h,j,k

i,l
h,i,k,l

g,h,i,j,k,l

g,j

φ

5
4
3
2
1

0

a
,b

,g
,h

b
,c,h

,i
c,i

a
,b

,c,g,h,i

φa
,g

a
,b

,g
,h

b
,c,h

,i
c,i

876 9 10 0

φ
a
a,b
b
a,b,c
b,c
c
d
d,e
e
d,e,f
e,f
f

RFC eqID(x,y)
(list of unique 2-D overlaps)

0
1
2
3
4
5
6
7
8
9
10
11
12

g
g,h
h
g,h,i
h,i
i
j
j,k
k
j,k,l
k,l
l

13
14
15
16
17
18
19
20
21
22
23
24

DCFL
Fy

0
1

2

4
5

3

DCFL
Fx

0
1

2

3
4

5

DCFL Fxy
(list of unique 2-D projections)

a (0,2)
b (1,1)
c (2,0)
d (3,2)
e (4,1)
f (5,0)

g (0,5)
h (1,4)
i (2,3)
j (3,5)
k (4,4)
l (5,3)

Figure 7.16: Contrast between unique field value labels inDistributed Crossproducting of Field
Labels(DCFL) and equivalence class identifiers (eqIDs) in Recursive Flow Classification; example
shows two fields of ad field search. Squares[a . . . l] represent the unique projections of two fields
x andy for all filters in a filter table.

or a custom ASIC with embedded TCAM.DCFL also provides more efficient support of dynamic

updates.

Given the volume of work in packet classification, we must show how our technique adds

value to the state of the art. In our opinion,HyperCutsis one of the most promising new algorithmic

solutions [59]. Introduced by Singh, Baboescu, Varghese, and Wang, the algorithm improves upon

the HiCuts algorithm developed by Gupta and McKeown [51] and also shares similarities with

theModular Packet Classificationalgorithms introduced by Woo [29]. In essence,HyperCutsis a

decision tree algorithm that attempts to minimize the depth of the tree by selecting “cuts” in multi-

dimensional space that optimally segregate packet filters into lists of bounded size. According to

performance results given in [59], traversing theHyperCutsdecision tree required between 8 and 35

memory accesses, and memory requirements for the decision tree ranged from 5.4 to 145.9 bytes per

filter. We assert thatDCFL exhibits advantages in all metrics of interest: worst-caseSMA, memory

requirements, and dynamic update performance.DCFL also provides the opportunity to strike a

178

favorable tradeoff between performance and memory requirements, as the various parameters may

be tuned to achieve the desired results. All new algorithmic approaches must make a strong case for

their advantage relative to Ternary Content Addressable Memory (TCAM). Due to its performance,

efficiency, scalability, and use of commodity hardware technology,DCFL has the ability to provide

equivalent lookup performance at much lower cost and power consumption.

7.9 Discussion

By transforming the problem of aggregating results from independent field search engines into a

distributed set membership query,Distributed Crossproducting of Field Labels(DCFL) avoids the

exponential increases in time and memory required by previous approaches. We introduced several

new concepts including field labeling,Meta-labelingunique field combinations, andField Splitting,

as well as optimized set membership data structures such asBloom Filter Arraysthat minimize the

number of memory accesses required to perform a set membership query. Using a combination of

real and synthetic filter sets, we demonstrated thatDCFL can achieve over 100 million searches per

second using existing hardware technology. Furthermore, we have also shown thatDCFL retains

its lookup performance and memory efficiency when the number of filters and number of fields

in the filters increases. Scalability to classify on additional fields is a distinct advantageDCFL

exhibits over existing decision tree algorithms and TCAM-based solutions. We continue to explore

optimizations to improve the search rate and memory efficiency ofDCFL. We also believe that

DCFL has potential value for other searching tasks beyond traditional packet classification.

179

Chapter 8

Summary

Only the curious will learn and only the resolute overcome the obstacles to learning.

The quest quotient has always excited me more than the intelligence quotient.

Eugene S. Wilson, Dean of Admissions, Amherst

All grand visions of the “next-generation” Internet assume that route lookup and packet classifi-

cation search engines will scale to support fast links, larger route tables and filter sets, and more

complex packet classification filters. The work described in this dissertation provides several con-

tributions that help meet these challenges. While the fruits of our work have addresseda number

of the open problems in packet classification, there remain a number of enticing opportunities for

future work.

8.1 Contributions

As evidenced by the number of proposed solutions discussed in Chapters 2 and 4,the route lookup

and packet classification problems are well-studied problems. Despite the energetic attention of

the research community, there remain a number of ripe areas for contribution. Three of the most

pressing issues are efficient search engine implementations, standardized performance evaluation

tools, and viable alternatives to TCAMs for packet classification. While many search engine im-

plementations exist, many are targeted to general purpose processor systems or ASICsand most

are not open-source or otherwise available for study by the research community. Dueto the lack

of standard performance evaluation tools, researchers offering new solutions producetheir own test

vectors, thus comparison of competing solutions is exceedingly difficult. As clearly indicated by

recent search engine market dynamics, router designers are increasingly concerned with power con-

sumption and scalability, thus they are beginning to favor algorithmic packet classification solutions

over TCAMs. We addressed all three of these areas throughout the course of this dissertation.

Chapter 3 presented the design and analysis of a scalable implementation of Eathertonand

Dittia’s Tree Bitmap algorithm for route lookup. The Fast Internet Protocol Lookup (FIPL) search

180

engine provides approximately one million lookups per second per engine andseveral engines may

be combined to provide even greater throughputs. Furthermore, each FIPL engine consumes less

than 1% of commodity reconfigurable logic device. We have made the VHDL code for the search

engine and evaluation environment publicly available. FIPL engines have already been incorpo-

rated in a System-on-Chip (SoC) packet processor for the Network Services Platform (NSP) [43]

which forms part of the infrastructure for the Open Network Laboratory (ONL) [109]. ONL al-

lows researchers to remotely configure and perform experiments on real networks comprised of

heterogeneous hosts, links, and open-platform extensible routers.

In Chapter 4, we provided a survey of packet classification techniques and developed a tax-

onomy which frames each technique according to its high-level approach to the problem. Through

the use of a limited set of running examples, the survey presents a more coherent viewof the state-

of-the-art and more clearly highlights potential areas for future contributions. We assert that the

taxonomy enables a better understanding of the packet classification algorithms, asopposed to sim-

ply reporting asymptotic performance bounds or reported performance results for eachtechnique.

Chapter 5 presented a detailed analysis of real filter sets as well as the forces influencing

their composition. This is the most comprehensive study of filter set structure that we are aware of.

The results of this analysis include an analysis of the storage inefficiency of standard TCAMs and

a novel study of thefield overlapin real filter sets. The latter findings led to the development of

Distributed Crossproducting of Field Labels, the new packet classification algorithm presented in

Chapter 7.

In response to the lack of publicly available filter sets and performance evaluation tools, we

developedClassBench. We presented the design and analysis of theClassBenchtools in Chapter 6.

The combination of theSynthetic Filter Set Generatorandparameter filesextracted from real filter

sets eliminates confidentiality concerns, and hence removes the access barrier to realistic test vec-

tors. In addition to providing high-level control of the composition of the filters in the synthetic filter

sets, theClassBenchtools also produce synthetic header traces with variable locality of reference.

We have made theClassBenchtools publicly available along withparameter filesfrom 12 real filter

sets and several research groups are already using the tools.

Chapter 7 presentedDistributed Crossproducting of Field Labels(DCFL), a novel combi-

nation of new and existing packet classification techniques that leverages key observations of filter

set structure and takes advantage of the capabilities of modern hardware technology. We introduced

several new concepts including field labeling,Meta-labelingunique field combinations, andField

Splitting. DCFL minimizes the number of sequential memory accesses required per lookup by trans-

forming the problem of aggregating results from independent field search engines into adistributed

set membership query. In order to support this novel approach, we developed three efficient data

structures includingBloom Filter Arrays. Using a set of 12 real filter sets and theClassBenchtools

suite, we demonstrated thatDCFL not only provides sufficient lookup performance, but also scales

181

to larger filter sets and more complex filters. Given the anticipated effects of Internet growth and di-

versification on the size and composition of filter sets,DCFL will become an increasingly attractive

alternative to TCAMs for packet classification.

8.2 Future Directions

The contributions of this dissertation provide a solid foundation for further research. We planto

promote broader use ofClassBenchwith the hope of refining the tools and developing a formal

benchmarking methodology. If embraced by the research community, the consensus building and

standardizing effort could be taken up by the Internet Engineering Task Force (IETF), leading to

one or more Request for Comment (RFC) documents detailing a packet classification benchmarking

methodology.

In order to demonstrate the realizable performance, determine hardware resource consump-

tion, and measure dynamic power consumption, we would like to design and implement a prototype

of the Distributed Crossproducting of Field Labelsalgorithm. As shown in Figure 8.1, we en-

vision a scalable, modular design which would allow the use of various field search engines and

dynamic reconfiguration of the aggregation network. The Field-programmable Port eXtender or

similar open-platform research system with reconfigurable hardware and adequate memorywould

provide a suitable implementation platform. This design effort would require adequate research

funding and human resources to accomplish in a timely manner.

Independent of a hardware prototyping effort, we believeDCFL has the potential to provide

better performance for a variety of complex searching problems. Several researchersin the net-

working community have directed their attention to high-performance string matching techniques

due to their use in network intrusion detection systems. Some Internet worms and viruses contain a

known “signature” or sequence of characters. Searching packet payloads forthese signatures at the

edge of the network can prevent the spread of malicious programs. Intrusion detection is just one

of the applications falling under the broad heading of “deep packet inspection”. Other applications

include load-balancing for web server farms which requires inspection of the HTTP header in order

to direct the web-page request to the most lightly-loaded server containing the page.Given that the

scaling properties and performance ofDCFL is independent of the type of field search performed,

our approach could provide better performance for a variety of hybrid search techniques comprised

of exact, range, prefix, and string matching.

182

Field
Search
Engine

embedded memory blocks

Field
Search
Engine

Field
Search
Engine

Reconfigurable Interconnect

DCFL
Agg.
Node

DCFL
Agg.
Node

Priority
Resolver

DCFL
Agg.
Node

Reconfigurable Memory Interface

I/O Interface

delay
buffers

Figure 8.1: Potential implementation architecture forDistributed Crossproducting of Field Labels.

183

Appendix A

Additional Data from Real Filter Sets

The following figures are a supplement to the data presented in Chapter 5.

184

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Source Address Trie Depth

D
is

tr
ib

u
ti

o
n

2 Children 1 Child

(a) Source address branching probability; average per level.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Source Address Trie Depth

S
ke

w
(n

o
d

es
w

it
h

2
ch

ild
re

n
)

(b) Source address skew; average per level for nodes with two children.

Figure A.1: Source address branching probability and skew for filter set ipc1.

185

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Destination Address Trie Depth

D
is

tr
ib

u
ti

o
n

2 Children 1 Child

(a) Destination address branching probability; average per level.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Destination Address Trie Depth

S
ke

w
(n

o
d

es
w

it
h

2
ch

ild
re

n
)

(b) Destination address skew; average per level for nodes with two children.

Figure A.2: Destination address branching probability and skew for filter set ipc1.

186

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Source Address Trie Depth

D
is

tr
ib

u
ti

o
n

2 Children 1 Child

(a) Source address branching probability; average per level.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Source Address Trie Depth

S
ke

w
(n

o
d

es
w

it
h

2
ch

ild
re

n
)

(b) Source address skew; average per level for nodes with two children.

Figure A.3: Source address branching probability and skew for filter set fw1.

187

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Destination Address Trie Depth

D
is

tr
ib

u
ti

o
n

2 Children 1 Child

(a) Destination address branching probability; average per level.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Destination Address Trie Depth

S
ke

w
(n

o
d

es
w

it
h

2
ch

ild
re

n
)

(b) Destination address skew; average per level for nodes with two children.

Figure A.4: Destination address branching probability and skew for filter set fw1.

188

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

5-tuple scope

N
u

m
b

er
o

f
fi

lt
er

s

(a) acl4,µ = 30.9, σ = 15.1

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

5-tuple scope

N
u

m
b

er
o

f
fi

lt
er

s

(b) ipc1,µ = 39.7, σ = 19.5

Figure A.5: Distribution of 5-tuple scope for filters in filter sets acl4 and ipc1.

189

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100

5-tuple scope

N
u

m
b

er
o

f
fi

lt
er

s

(a) fw1,µ = 51.2, σ = 15.7

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 10 20 30 40 50 60 70 80 90 100

5-tuple scope

N
u

m
b

er
o

f
fi

lt
er

s

(b) fw5, µ = 55.8, σ = 17.0

Figure A.6: Distribution of 5-tuple scope for filters in filter sets fw1 and fw5.

190

References

[1] D. Clark, “The Design Philosophy of the DARPA Internet Protocols,” 1988.

[2] “Internet Domain Survey.” Internet Systems Consortium, January 2004.

[3] ClickZ, “Population Explosion!.” http://www.clikz.com, May 2004. ClickZ Stats.

[4] Reuters, “U.S. online content spending rises in 2003,” May 2004. San Francisco.

[5] CNET, “Online holiday apending up, up and away.” http://news.com.com,December 2003.

[6] Linley, “Search Engine Market Maturing.” The Linley Wire, Volume 4, Issue 11, June 2004.

[7] S. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing (CIDR): an address

assignment and aggregation strategy.” RFC 1519, September 1993.

[8] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification.” RFC 2460,

December 1998.

[9] United States Department of Defense, “Next-Generation Internet Protocol to EnableNet-

Centric Operations.” News Release No. 413-03, June 2003.

[10] D. Cheriton, “Internet Architecture - It’s Future and Why it matters.” Keynote Address, ACM

SIGCOMM, August 2003.

[11] W. N. Eatherton, “Hardware-Based Internet Protocol Prefix Lookups.” thesis, Washington

University in St. Louis, 1998. Available athttp://www.arl.wustl.edu/ .

[12] D. E. Knuth,Sorting and Searching, vol. 3 of The Art of Computer Programming. Addison-

Wesley, 1973.

[13] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms. McGraw-Hill Book

Company, 1990.

[14] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors,”Communica-

tions of the ACM, vol. 13, pp. 422–426, July 1970.

191

[15] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,” in Pro-

ceedings of 40th Annual Allerton Conference, October 2002.

[16] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalablewide-area web

cache sharing protocol,”IEEE/ACM Transactions on Networking, vol. 8, pp. 281–293, June

2000.

[17] A. J. McAulay and P. Francis, “Fast Routing Table Lookup Using CAMs,” inIEEE Infocom,

1993.

[18] K. Sklower, “A tree-based routing table for Berkeley Unix,” tech. rep., University of Califor-

nia, Berkeley, 1993.

[19] V. Srinivasan and G. Varghese, “Faster IP Lookups using Controlled Prefix Expansion,” in

SIGMETRICS, 1998.

[20] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at Memory Access

Speeds,” inIEEE Infocom, 1998.

[21] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding Tables forFast

Routing Lookups,” inACM Sigcomm, 1997.

[22] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S. Sproull, and D. B. Parlour,“Scalable IP

Lookup for Internet Routers,”IEEE Journal on Selected Areas in Communications, vol. 21,

pp. 522–534, May 2003.

[23] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using Multiway andMulticolumn

Search,”IEEE/ACM Transactions on Networking, vol. 7, no. 3, pp. 324–334, 1999.

[24] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high speed IP routing table

lookups,” inProceedings of ACM SIGCOMM ’97, pp. 25–36, September 1997.

[25] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest Prefix Matchingusing

Bloom Filters,” inACM SIGCOMM’03, August 2003.

[26] C.-F. Su, “High-Speed Packet Classification Using Segment Tree,” inProceedings of IEEE

Globecom, 2000.

[27] A. Feldmann and S. Muthukrishnan, “Tradeoffs for Packet Classification,” inIEEE Infocom,

March 2000.

[28] J. van Lunteren and T. Engbersen, “Fast and scalable packet classification,”IEEE Journal on

Selected Areas in Communications, vol. 21, pp. 560–571, May 2003.

192

[29] T. Y. C. Woo, “A Modular Approach to Packet Classification: Algorithms and Results,” in

IEEE Infocom, March 2000.

[30] F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction. Texts and

Monographs in Computer Science, Springer-Verlag, 1985.

[31] R. E. Tarjan,Data Structures and Network Algorithms. CBMS-NSF 44, Society for Industrial

and Applied Mathematics, 1983.

[32] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification Using ExtendedTCAMs,” in

Proceedings of IEEE International Conference on Network Protocols (ICNP), 2003.

[33] S. Choi, J. Dehart, R. Keller, F. Kuhns, J. Lockwood, P. Pappu, J. Parwatikar, W. D. Richard,

E. Spitznagel, D. Taylor, J. Turner, , and K. Wong, “Design of a High Performance Dy-

namically Extensible Router,” inDARPA Active Networks Conference and Exposition, May

2002.

[34] J. S. Turner, “Gigabit Technology Distribution Program.”http://www.arl.wustl.-

edu/gigabitkits/kits.html , Aug. 1999.

[35] J. Turner, T. Chaney, A. Fingerhut, and M. Flucke, “Design of a Gigabit ATMSwitch,” in In

Proceedings of Infocom 97, Mar. 1997.

[36] S. Choi, J. Dehart, R. Keller, J. W. Lockwood, J. Turner, and T. Wolf, “Design of a flexible

open platform for high performance active networks,” inAllerton Conference, (Champaign,

IL), 1999.

[37] J. W. Lockwood, J. S. Turner, and D. E. Taylor, “Field programmable port extender (FPX) for

distributed routing and queuing,” inACM International Symposium on Field Programmable

Gate Arrays (FPGA’2000), (Monterey, CA, USA), pp. 137–144, Feb. 2000.

[38] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor, “Reprogrammable Network Packet

Processing on the Field Programmable Port Extender (FPX),” inACM International Sympo-

sium on Field Programmable Gate Arrays (FPGA’2001), (Monterey, CA, USA), pp. 87–93,

Feb. 2001.

[39] P. Newmanet al., “Transmission of flow labelled IPv4 on ATM data links.” Internet RFC

1954, May 1996.

[40] T. S. Sproull, J. W. Lockwood, and D. E. Taylor, “Control and Configuration Software for

a Reconfigurable Networking Hardware Platform,” inFCCM’02: 2002 IEEE Symposium on

Field-Programmable Custom Computing Machines, April 2002.

[41] J. M. Anderson, M. Ilyas, and S. Hsu, “Distributed network management in an internet envi-

ronment,” inGlobecom’97, vol. 1, (Pheonix, AZ), pp. 180–184, Nov. 1997.

193

[42] “Internet Routing Table Statistics.” http://www.merit.edu/ipma-

/routing_table/ , May 2001.

[43] D. Taylor, A. Chandra, Y. Chen, S. Dharmapurikar, J. Lockwood, W. Tang, and J. Turner,

“System-on-Chip Packet Processor for an Experimental Network Services Platform,” inIEEE

Globecom, December 2003.

[44] Xilinx, “Virtex-II Pro Platform FPGAs: Introduction and Overview.” DS083-1 (v3.0), De-

cember 2003.

[45] P. Newman, G. Minshall, and L. Huston, “IP Switching and Gigabit Routers.” IEEE Com-

munications Magazine, January 1997.

[46] G. Chandranmenon and G. Varghese, “Trading Packet Headers for Packet Processing,”

IEEE/ACM Transactions on Networking, vol. 4, pp. 141–152, April 1996.

[47] Y. Rekhter, B. Davie, D. Katz, E. Rosen, and G. Swallow, “Cisco Systems’ Tag Switching

Architecture Overview.” RFC 2105, February 1997.

[48] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Architecture.”

RFC 3031, January 2001.

[49] SiberCore Technologies Inc., “SiberCAM Ultra-2M SCT2000.” Product Brief, 2000.

[50] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,” inACM Sigcomm,

August 1999.

[51] P. Gupta and N. McKeown, “Packet Classification using Hierarchical IntelligentCuttings,”

in Hot Interconnects VII, August 1999.

[52] T. V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet Forwarding Using Effi-

cient Multi-dimensional Range Matching,” inACM SIGCOMM‘98, September 1998.

[53] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel, “Fast and Scalable Layer Four Switch-

ing,” in ACM Sigcomm, June 1998.

[54] F. Baboescu and G. Varghese, “Scalable Packet Classification,” inACM Sigcomm, August

2001.

[55] R. A. Kempke and A. J. McAuley, “Ternary CAM Memory Architecture and Methodology.”

United States Patent 5,841,874, November 1998. Motorola, Inc.

[56] G. Gibson, F. Shafai, and J. Podaima, “Content Addressable Memory Storage Device.”

United States Patent 6,044,005, March 2000. SiberCore Technologies, Inc.

194

[57] R. K. Montoye, “Apparatus for Storing “Don’t Care” in a Content AddressableMemory

Cell.” United States Patent 5,319,590, June 1994. HaL Computer Systems, Inc.

[58] F. Baboescu, S. Singh, and G. Varghese, “Packet Classification for Core Routers: Is there an

alternative to CAMs?,” inIEEE Infocom, 2003.

[59] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet Classification Using Multidimen-

sional Cutting,” inProceedings of ACM SIGCOMM’03, August 2003. Karlsruhe, Germany.

[60] D. E. Taylor and J. S. Turner, “Scalable Packet Classification using Distributed Crossproduct-

ing of Field Labels,” tech. rep., Department of Computer Science and Engineering, Washing-

ton University in Saint Louis, 2004.

[61] SiberCore Technologies Inc., “SiberCAM Ultra-18M SCT1842.” Product Brief, 2002.

[62] Micron Technology Inc., “Harmony TCAM 1Mb and 2Mb.” Datasheet, January 2003.

[63] Micron Technology Inc., “36Mb DDR SIO SRAM 2-Word Burst.” Datasheet, December

2002.

[64] D. Decasper, G. Parulkar, Z. Dittia, and B. Plattner, “Router Plugins: A SoftwareArchitecture

for Next Generation Routers,” inProceedings of ACM Sigcomm, September 1998.

[65] J. van Lunteren, “Searching very large routing tables in wide embedded memory,” in Pro-

ceedings of IEEE Globecom, vol. 3, pp. 1615–1619, November 2001.

[66] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple spacesearch,” in

SIGCOMM 99, pp. 135–146, 1999.

[67] V. Srinivasan, “A Packet Classification and Filter Management System.” Microsoft Research,

2001.

[68] P. Warkhede, S. Suri, and G. Varghese, “Fast Packet Classification for Two-Dimensional

Conflict-Free Filters,” inIEEE Infocom, 2001.

[69] A. Hari, S. Suri, and G. Parulkar, “Detecting and Resolving Packet Filter Conflicts,” in Pro-

ceedings of IEEE Infocom, 2000.

[70] J. L. Hennessy and D. A. Patterson,Computer Architecture A Quantitative Approach. Morgan

Kaufmann Publishers, Inc., 2 ed., 1996.

[71] F. Chang, K. Li, and W. chang Feng, “Approximate Packet Classification Caching,” Tech.

Rep. CSE-03-002, OGI School of Science and Engineering at OHSU, 2003.

[72] M. M. I. Chvets, “Multi-zone Caches for Accelerating IP Routing Table Lookups,” inPro-

ceedings of High-Performance Switching and Routing, 2002.

195

[73] K. Li, F. Chang, D. Berger, and W. chang Fang, “Architectures for Packet Classification

Caching,” inProceedings of IEEE ICON, 2003.

[74] IBM Blue Logic, “Embedded SRAM Selection Guide,” November 2002.

[75] Micron Technology Inc., “256Mb Double Data Rate (DDR) SDRAM.” Datasheet,October

2002.

[76] P. Crowley, M. Franklin, H. Hadimioglu, and P. Onufryk,Network Processor Design: Issues

and Practices, vol. 1. Morgan Kaufmann, 2002.

[77] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T. Campbell, “Directions in Packet

Classification for Network Processors,” inSecond Workshop on Network Processors (NP2),

February 2003.

[78] N. Shah, “Understanding network processors,” Tech. Rep. Version 1.0, EECS, University of

California, Berkeley, September 2001.

[79] Cisco, “CiscoWorks VPN/Security Management Solution,” tech. rep., Cisco Systems,Inc.,

2004.

[80] Lucent, “Lucent Security Management Server: Security, VPN, and QoS Management Solu-

tion,” tech. rep., Lucent Technologies Inc., 2004.

[81] J. Postel, “Transmission Control Protocol.” RFC 793, September 1981.

[82] J. Postel, “User Datagram Protocol.” RFC 768, August 1980.

[83] J. Postel, “Internet Control Message Protocol.” RFC 792, September 1981.

[84] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “General Routing Encapsulation.”

RFC 2784, March 2000.

[85] J. Moy, “OSPF Version 2.” RFC 2784, July 1997.

[86] Cisco, “Enhanced Interior Gateway Routing Protocol (EIGRP).” white paper, 2003. Cisco

Systems Inc.

[87] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP).” RFC 2406, November

1998.

[88] S. Kent and R. Atkinson, “IP Authentication Header.” RFC 2402, November 1998.

[89] C. Perkins, “IP Encapsulation within IP.” RFC 2003, October 1996.

[90] C. Bormann, et. al., “RObust Header Compression (ROHC): Framework and four profiles:

RTP, UDP, ESP, and uncompressed.” RFC 3095, July 2001. IETF Network Working Group.

196

[91] “IPv6 Operational Report.” http://net-stats.ipv6.tilab.com/bgp/-

bgp-table-snapshot.txt/ , February 2003.

[92] R. Hinden and S. Deering, “Internet Version 6 (IPv6) Addressing Architecture.” RFC3513,

April 2003.

[93] R. Hinden, S. Deering, and E. Nordmark, “IPv6 Global Unicast Address Format.” Internet

Draft, February 2003.

[94] IANA, “IPv6 Address Allocation and Assignment Policy.”

http://www.iana.org/ipaddress/ipv6-allocation-policy-26jun02, June 2002.

[95] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, “Framework for ip performance metrics.”

RFC 2330, May 1998.

[96] S. Bradner, “Benchmarking Terminology for Network Interconnect Devices.” RFC 1242,

July 1991.

[97] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network Interconnect De-

vices.” RFC 2544, March 1999.

[98] G. Trotter, “Terminology for Forwarding Information Base (FIB) based Router Performance.”

RFC 3222, December 2001.

[99] G. Trotter, “Methodology for Forwarding Information Base (FIB) based Router Perfor-

mance.” Internet Draft, January 2002.

[100] D. Newman, “Benchmarking Terminology for Firewall Performance.” RFC 2647, August

1999.

[101] B. Hickman, D. Newman, S. Tadjudin, and T. Martin, “Benchmarking Methodology for Fire-

wall Performance.” RFC 3511, April 2003.

[102] P. Chandra, F. Hady, and S. Y. Lim, “Framework for Benchmarking Network Processors.”

Network Processing Forum, 2002.

[103] F. Baboescu and G. Varghese, “Fast and Scalable Conflict Detection forPacket Classifiers,”

in Proceedings of IEEE International Conference on Network Protocols (ICNP), 2002.

[104] V. Sahasranaman and M. Buddhikot, “Comparative Evaluation of Software Implementations

of Layer 4 Packet Classification Schemes,” inProceedings of IEEE International Conference

on Network Protocols, 2001.

[105] Wikipedia, “Pareto distribution.” Wikipedia, The Free Encyclopedia, April 2004.

http://en.wikipedia.org/wiki/Paretodistribution.

197

[106] G. Narlikar, A. Basu, and F. Zane, “CoolCAMs: Power-Efficient TCAMs for Forwarding

Engines,” inProc. of Infocom, 2003.

[107] Xilinx, “Virtex-II Platform FPGAs: Introduction and Overview.” DS031-1 (v2.0), August

2003.

[108] D. Shah and P. Gupta, “Fast incremental updates on ternary-cams for routing lookups and

packet classification,” inHot Interconnects (HotI-8), p. 6.1, Aug. 2000.

[109] “Open Network Laboratory: A Resource for Networking Researchers.”

http://www.arl.wustl.edu/arl/projects/onl/. Applied Research Laboratory, Washington

University in Saint Louis.

198

Vita
David Edward Taylor

Date of Birth December 11, 1975

Place of Birth Saint Louis, Missouri, United States of America

Degrees Washington University in Saint Louis
Master of Science in Electrical Engineering, 2002
Master of Science in Computer Engineering, 2002
Bachelor of Science in Electrical Engineering cum laude, 1998
Bachelor of Science in Computer Engineering cum laude, 1998

Experience IBM Zurich Research Laboratory, Network Processor Hardware Group,
Summer 2002
Applied Research Laboratory, Washington University in Saint Louis,
1999 – 2004
Mentor Graphics Higher Education Project, Summer 1998

Professional
Societies

Institute of Electrical and Electronics Engineers (IEEE)
IEEE Communications Society
IEEE Computer Society
Association for Computing Machines (ACM)

Professional
Activities

Reviewer for IEEE/ACM Transactions on Networking
Reviewer for IEEE Journal on Selected Areas in Communications
Reviewer for Computer Networks (Elsevier)
Reviewer for IEEE Micro
Reviewer for IEEE Communications Letters
Reviewer for IEEE Infocom 2003, 2004
Reviewer for IEEE Globecom 2003, 2004

Scholarships
& Awards

Graduate Student Representative to the Board of Trustees (2003 – 2004)
Research Assistantship (January 1999 – present)
Dean’s Honorary Scholarship (1994 – 1998)
Missouri Higher Education Academic Scholarship (1994 – 1998)
Graduate of the LeaderShape Institute (Summer 1997)
Eta Kappa Nu (International Electrical Engineering Honor Fraternity)
Eagle Scout, Boy Scouts of America

199

Journal
Publications

David E. Taylor, Jonathan S. Turner, John W. Lockwood, Todd Sproull,
David B. Parlour,Scalable IP Lookup for Internet Routers, IEEE
Journal on Selected Areas in Communications, May 2003, Volume
21, Number 4.

David E. Taylor, Jonathan S. Turner, John W. Lockwood, Edson L. Horta
Dynamic Hardware Plugins (DHP): Exploiting Reconfigurable Hard-
ware for High-Performance Programmable Routers, Computer Net-
works, February 2002, Volume 38, Issue 3, pp. 295-310, Elsevier
Science.

William D. Richard, David E. Taylor, David M. Zar,A Capstone Com-
puter Engineering Design Course, IEEE Transactions on Education,
November 1999, Volume 42, Number 4, pp. 288-294.

Conference
Publications

David E. Taylor, Jonathan S. Turner,Scalable Packet Classification us-
ing Distributed Crossproducting of Field Labels, ACM Sigcomm’04
Student Poster Session, 8/04.

David Taylor, Alex Chandra, Yuhua Chen, Sarang Dharmapurikar, John
Lockwood, Wenjing Tang, Jonathan Turner,System-on-Chip Packet
Processor for an Experimental Network Services Platform, IEEE Globe-
com’03, December 1-5, 2003, San Francisco, CA.

Ed Spitznagel, David Taylor, Jonathan Turer,Packet Classification Us-
ing Extended TCAMs, 11th IEEE International Conference on Net-
work Protocols (ICNP), November 4-7, 2003, Atlanta, GA.

Sarang Dharmapurikar, Praveen Krishnamurthy, David E. Taylor,Longest
Prefix Matching using Bloom Filters, ACM SIGCOMM’03, August
25-29, 2003, Karlsruhe, Germany.

David E. Taylor, John W. Lockwood, Todd Sproull, Jonathan S. Turner,
David B. Parlour,Scalable IP Lookup for Programmable Routers,
IEEE INFOCOM 2002: 21st Annual Joint Conference of the IEEE
Computer and Communications Societies, New York, NY, 6/02.

Edson L. Horta, John W. Lockwood, David E. Taylor, David Parlour,
Dynamic Hardware Plugins in an FPGA with Partial Run-time Re-
configuration, Design Automation Conference (DAC), New Orleans,
LA, 6/02.

200

Sumi Choi, John Dehart, Ralph Keller, Fred Kuhns, John Lockwood,
Prashanth Pappu, Jyoti Parwatikar, W. David Richard, Ed Spitznagel,
David Taylor, Jonathan Turner, and Ken Wong,Design of a High Per-
formance Dynamically Extensible RouterProceedings of the DARPA
Active Networks Conference and Exposition, 5/02.

Todd S. Sproull, John W. Lockwood, David E. Taylor,Control and Con-
figuration Software for a Reconfigurable Networking Hardware Plat-
form, FCCM’02: 2002 IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa, CA, 4/02.

David E. Taylor, Jonathan S. Turner, John W. Lockwood,Dynamic Hard-
ware Plugins (DHP): Exploiting Reconfigurable Hardware for High-
Performance Programmable Routers, IEEE OPENARCH 2001: 4th
IEEE Conference on Open Architectures and Network Programming,
Anchorage, AK, 4/01.

John W. Lockwood, Naji Naufel, David E. Taylor, Jon S. Turner,Repro-
grammable Network Packet Processing on the Field Programmable
Port Extender (FPX), FPGA 2001: Ninth ACM International Sympo-
sium on Field-Programmable Gate Arrays, Monterey, CA, 2/01.

William D. Richard, David E. Taylor,Development of an FPGA-Based
South Bridge using Spectrum and ModelSim, Mentor Graphics User’s
Group International Conference, Portland, OR, 10/00.

John W. Lockwood, Jon S. Turner, David E. Taylor,Field Programmable
Port Extender (FPX) for Distributed Routing and Queueing, FPGA
2000: Eighth ACM International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, 2/00.

David E. Taylor, David M. Zar,Developing an FPGA Workflow to Ease
Novice and Experienced Designers, Mentor Graphics User’s Group
International Conference, Portland, OR, 10/98.Awarded Best Paper
for University/Research Track.

201

Technical
Reports

David E. Taylor, Jonathan S. Turner,Scalable Packet Classification us-
ing Distributed Crossproducting of Field Labels, WUCSE-2004-38,
6/04.

David E. Taylor, Jonathan S. Turner,ClassBench: A Packet Classifica-
tion Benchmark, WUCSE-2004-28, 5/04.

David E. Taylor, Survey & Taxonomy of Packet Classification Tech-
niques, WUCSE-2004-24, 5/04.

David E. Taylor, Jonathan S. Turner,Towards a Packet Classification
Benchmark, WUCSE-2003-42, 5/03.

David Taylor, Alex Chandra, Yuhua Chen, Sarang Dharmapurikar, John
Lockwood, Wenjing Tang, Jonathan Turner,System-on-Chip Packet
Processor for an Experimental Network Services Platform, WUCSE-
2003-22, 3/03.

David E. Taylor, John W. Lockwood, Todd Sproull, Jonathan S. Turner,
David B. Parlour,Scalable IP Lookup for Programmable Routers,
WUCS-01-33, 10/01.

John D. DeHart, William D. Richard, Edward W. Spitznagel, David E.
Taylor,The Smart Port Card: An Embedded Unix Processor Architec-
ture for Network Management and Active Networking, WUCS-01-18,
8/01.

David E. Taylor, John W. Lockwood, Naji Naufel,RAD Module Infras-
tructure of the Field Programmable Port Extender (FPX) Version 2.0,
WUCS-TM-01-16, 7/01.

David E. Taylor, John W. Lockwood, Sarang Dharmapurikar,General-
ized RAD Module Interface Specification of the Field Programmable
Port Extender (FPX) Version 2.0, WUCS-TM-01-15, 7/01.

August 2004

	Models, Algorithms, and Architectures for Scalable Packet Classification
	Recommended Citation
	Models, Algorithms, and Architectures for Scalable Packet Classification

	tmp.1470340445.pdf.XHyJB

	Abstract: Abstract: The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switching and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined
traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets, and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of
packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: July 28, 2004
	Author: Authors: Taylor, David E.
	Title: Models, Algorithms, and Architectures for Scalable Packet Classification, Doctoral Dissertation, August 2004
	ReportNumber: 2004-40
	DepartmentName: Department of Computer Science & Engineering

